Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocations formation

The rate at which alcohols are converted to alkyl halides depends on the rate of carbocation formation tertiary alcohols are most reactive primary alcohols and methanol are least reactive... [Pg.181]

The reactivity order parallels the ease of carbocation formation Increasing rate of elimination by the El mechanism... [Pg.219]

In general alkyl substituents increase the reactivity of a double bond toward elec trophilic addition Alkyl groups are electron releasing and the more electron rich a dou ble bond the better it can share its tt electrons with an electrophile Along with the observed regioselectivity of addition this supports the idea that carbocation formation rather than carbocation capture is rate determining... [Pg.241]

The notion that carbocation formation is rate determining follows from our previous experience and by observing how the reaction rate is affected by the shucture of the aUcene Table 6 2 gives some data showing that alkenes that yield relatively stable carbocations react faster than those that yield less stable carbocations Protonation of ethylene the least reactive aUcene m the table yields a primary carbocation protonation of 2 methylpropene the most reactive m the table yields a tertiary carbocation As we have seen on other occa sions the more stable the carbocation the faster is its rate of formation... [Pg.248]

Both compounds react by an S l mechanism and their relative rates reflect their acti vation energies for carbocation formation Because the allylic chloride is more reactive we reason that it ionizes more rapidly because it forms a more stable carbocation Struc turally the two carbocations differ m that the allylic carbocation has a vinyl substituent on Its positively charged carbon m place of one of the methyl groups of tert butyl cation... [Pg.392]

This carbocation does not receive the extra increment of stabilization that its benzylic isomer does and so is formed more slowly The regioselectivity of addition is controlled by the rate of carbocation formation the more stable benzylic carbocation is formed faster and is the one that determines the reaction product... [Pg.448]

Section 11 16 Addition reactions to alkenylbenzenes occur at the double bond of the alkenyl substituent and the regioselectivity of electrophilic addition is governed by carbocation formation at the benzylic carbon See Table 11 2... [Pg.465]

Cycloahphatics capable of tertiary carbocation formation are candidates for nucleophilic addition of nitriles. HCN in strong sulfuric acid transforms 1-methyl-1-cyclohexanol to 1-methyl-1-cyclohexylamine through the formamide (47). The terpenes pinene (14) [2437-95-8] and limonene [5989-27-5] (15) each undergo a double addition of HCN to provide, after hydrolysis, the cycloahphatic diamine 1,8-menthanediamine (16) (48). [Pg.210]

An activation energy of this magnitude would lead to an imobservably slow reaction at normal temperature. Carbocation formation in solution is feasible because of the solvation of the ions that are produced. [Pg.276]

It has been possible to obtain thermodynamic data for the ionization of alkyl chlorides by reaction with SbFs, a Lewis acid, in the nonnucleophilic solvent S02C1F. It has been foimd that the solvation energies of the carbocations in this medium are small and do not differ much from one another, making comparison of the nonisomeric systems possible. As long as subsequent reactions of the carbocation can be avoided, the thermodynamic characteristics of this reaction provide a measure of the relative ease of carbocation formation in solution. [Pg.280]

The pinacol rearrangement is frequently observed when geminal diols react with acid. The stmcture of the products from unsymmetrical diols can be predicted on the basis of ease of carbocation formation. For example, l,l-diphenyl-2-metltyl-l,2-propanediol rearranges to... [Pg.326]

Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary. Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary.
More often than what has been mentioned above regarding the cyclization of paraffins over the platinum catalyst, the formed olefin species reacts with the acid catalyst forming a carbocation. Carbocation formation may occur by abstraction of a hydride ion from any position along the hydrocarbon chain. However, if the carbocation intermediate has the right configuration, cyclization occurs. For example, cyclization of 1-heptene over the alumina catalyst can occur by the following successive steps ... [Pg.64]

The formed methylcyclohexane carbocation eliminates a proton, yielding 3-methylcyclohexene. 3-Methylcyclohexene can either dehydrogenate over the platinum surface or form a new carbocation by losing H over the acid catalyst surface. This step is fast, because an allylic car-bonium ion is formed. Losing a proton on a Lewis base site produces methyl cyclohexadiene. This sequence of carbocation formation, followed by loss of a proton, continues till the final formation of toluene. [Pg.64]

Leaving group Good leaving groups increase the reaction rate by lowering the energy level of the transition state for carbocation formation. [Pg.380]

The deuterium isotope effect for each hydrogen atom ortho to the diazonio group ( H/ D = 1.22, Swain et al., 1973b) is the largest secondary aromatic hydrogen isotope effect yet observed. It is comparable to those observed for a-deuterium in reactions involving carbocation formation from secondary aliphatic esters. Ob-... [Pg.169]

There is direct evidence, from IR and NMR spectra, that the re/T-butyl cation is quantitatively formed when tert-butyl chloride reacts with AICI3 in anhydrous liquid HCl. In the case of alkenes, Markovnikov s rule (p. 984) is followed. Carbocation formation is particularly easy from some reagents, because of the stability of the cations. Triphenyhnethyl chloride and 1-chloroadamantane alkylate activated... [Pg.710]

The products obtained from DPM cracking in the present work agree with the results from the literature, mentioned in the Introduction, which indicate that the reaction proceeds via carbocation formation on acidic sites. This implies that the decomposition of DPM does not need the successive intervention of two catalytic sites, like in the "ideal hydrocracking" mechanism. Only acidic sites are sufficient to carry out the reaction. The improved activity of the mixtures when compared to the pure phases must therefore be explained differently. [Pg.104]

The acid-catalyzed mechanism involves carbocation formation and substituent migration assisted by the hydroxy group. [Pg.884]

Boruah, R. C. Skibo, E. B. Determination of the pKa values for the mitomycin C redox couple by tritration, pH rate profile, and Nemst-Clark fits. Studies of methanol elimination, carbocation formation, and the carbocation/quinone methide equilibrium. J. Org. Chem. 1995, 60, 2232-2243. [Pg.264]

The kinetics of deuterium isotope exchange between diphenyl phosphine and t-butylthiol have been studied by H n.m.r. spectroscopy.274 A negative temperature coefficient was observed for the reaction of a perf1uoroalky1 phosphite with a fluorinated aldehyde.275 The kinetics for the reaction of alcohols with phosphoryl trichloride bore strong similarities to those of carboxylic acid derivatives.276 An interesting report desribed the solvolysis of ary 1 hydroxymethyl-phosphonates. It was shown that a phosphoryl group does not prevent carbocation formation on an immediately adjacent carbon atom.277... [Pg.416]

This all suggests slow, rate-limiting breaking of the C—H bond to form the stabilised carbanion intermediate (54), followed by fast uptake of D from the solvent D20. Loss of optical activity occurs at each C—H bond breakage, as the bonds to the carbanion carbon atom will need to assume a planar configuration if stabilisation by delocalisation over the adjacent C=0 is to occur. Subsequent addition of D is then statistically equally likely to occur from either side. This slow, rate-limiting formation of a carbanion intermediate, followed by rapid electrophilic attack to complete the overall substitution, is formally similar to rate-limiting carbocation formation in the SNi pathway it is therefore referred to as the SE1 pathway. [Pg.288]

The cyclic phosphonium salts 140,141,143,145, and 146 so obtained are evidence for the mechanism of the oxaphospholic cyclization and especially for the main role of the tertiary carbocation formation during the process. The additional data which support this assumption, come from the investigation of the same reaction, but with different substrate, i.e., dimethyl(l,2-hexadienyl)phosphine oxide 147. In this case, the reaction mechanism involved formation of secondary carbocation that gives oxaphosphole product 148 only in 10% yield (Scheme 60) [124],... [Pg.48]

The determinations of absolute rate constants with values up to ks = 1010 s-1 for the reaction of carbocations with water and other nucleophilic solvents using either the direct method of laser flash photolysis1 or the indirect azide ion clock method.8 These values of ks (s ) have been combined with rate constants for carbocation formation in the microscopic reverse direction to give values of KR (m) for the equilibrium addition of water to a wide range of benzylic carbocations.9 13... [Pg.69]

The existence of trivalent silicenium cations as reactive species in solution is more controversial. Many early attempts to demonstrate the solution-phase existence of stable silicenium ions by using techniques analogous to those successfully applied to carbocation formation failed.34-36 Other reports of attempts... [Pg.7]

As shown in Table 4.38, three major reaction pathways are available to hypova-lent metals in the presence of an alkene (A) and (C) dative and synergistic coordination (B) carbocation formation and (D) and (E) metallacyclic and migratory insertions. The latter types are of particular importance in metal-catalyzed alkene polymerizations and will be given primary attention in the discussion that follows. [Pg.501]


See other pages where Carbocations formation is mentioned: [Pg.156]    [Pg.208]    [Pg.342]    [Pg.277]    [Pg.278]    [Pg.362]    [Pg.156]    [Pg.208]    [Pg.342]    [Pg.95]    [Pg.128]    [Pg.65]    [Pg.199]    [Pg.530]    [Pg.1379]    [Pg.98]    [Pg.536]    [Pg.536]    [Pg.530]    [Pg.345]    [Pg.383]    [Pg.28]   
See also in sourсe #XX -- [ Pg.101 , Pg.107 , Pg.120 ]

See also in sourсe #XX -- [ Pg.101 , Pg.107 , Pg.120 ]

See also in sourсe #XX -- [ Pg.101 , Pg.107 , Pg.120 ]

See also in sourсe #XX -- [ Pg.580 , Pg.634 ]

See also in sourсe #XX -- [ Pg.107 , Pg.255 ]

See also in sourсe #XX -- [ Pg.59 , Pg.60 , Pg.62 , Pg.320 , Pg.321 , Pg.322 ]

See also in sourсe #XX -- [ Pg.862 ]

See also in sourсe #XX -- [ Pg.94 , Pg.104 ]

See also in sourсe #XX -- [ Pg.36 ]

See also in sourсe #XX -- [ Pg.292 ]

See also in sourсe #XX -- [ Pg.1044 , Pg.1045 ]




SEARCH



7-Silyl carbocations formation

Carbocation formation

Carbocation formation

Carbocation formation equilibria

Carbocation formation, and

Carbocation formation, thermodynamics

Carbocations allylic, formation

Carbocations as intermediates in acetal formation

Carbocations as intermediates in glycoside formation

Carbocations ether formation

Carbocations formation from diazonium ions

Carbocations heats of formation

Carbon Bond Formation Involving Carbocations

Criteria for the Formation of Nonclassical Carbocations

Ether formation carbocation

Formation of Carbocations

Heterolysis carbocation formation

Oxidative carbocation formation

Potential energy carbocation formation

© 2024 chempedia.info