Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst new approaches

The chapter Chiral Modification of Catalytic Surfaces [84] in Design of Heterogeneous Catalysts New Approaches based on Synthesis, Characterization and Modelling summarizes the fundamental research related to the chiral hydrogenation of a-ketoesters on cinchona-modified platinum catalysts and that of [3-ketoesters on tartaric acid-modified nickel catalysts. Emphasis is placed on the adsorption of chiral modifiers as well as on the interaction of the modifier and the organic reactant on catalytic surfaces. [Pg.259]

Ma, Z. Zaera, F. In Design of Heterogeneous Catalysts New Approaches based on Synthesis, Characterization and Modelling, Ozkan, U. S. Ed. Wiley-VCH Weinheim, 2008 pp in press. [Pg.263]

The paper presents data on development of Mn oxide catalysts for selective oxidation of lean methane mixtures with air to produce CO2 and generate heat. To obtain catalysts, new approaches to the synthesis of polyoxide materials based on Mn were adopted. Catalysts were modified by doping with La, Ce, Ba and Sr nitrates which were deposited from solutions onto the stabilized 2%Ce/0-Al2O3 support (of surface area 100 m /g and pellet diameter 4-5 mm). By varying the components of the impregnation mixture, it was possible to optimize the chemical composition and ratio of elements in the multi-component catalysts (at Ba Sr La Ce Mn = 1 1 1 7 10 ratio). The catalyst composition conformed to the oxide stoichiometry in the perovskite structure. [Pg.210]

A completely new approach for BTX production has emerged in recent years. It converts to paraffins into aromatics using a modified ZSM-5 zeoHte catalyst which contains gallium (19). An example of this approach, the Cyclar process, has been in commercial operation by British Petroleum at Grangemouth, Scotiand since August 1990 (20). It uses C —feed and employs UOP s CCR technology to compensate for rapid catalyst coking. [Pg.310]

Diphenol carbonate is produced by the reaction of phosgene and phenol. A new approach to diphenol carbonate and non-phosgene route is by the reaction of CO and methyl nitrite using Pd/alumina. Dimethyl carbonate is formed which is further reacted with phenol in presence of tetraphenox titanium catalyst. Decarbonylation in the liquid phase yields diphenyl carbonate. [Pg.338]

Pressure influences the regioselectivity and the endo-exo diastereoselectivity of the cycloadditions. All the cycloadducts were converted into polycyclic aromatic hydrocarbons by treatment over a Pd/charcoal catalyst. This approach provides a new and efficient route to a broad variety of polycyclic aromatic hydrocarbons [36]. [Pg.223]

In the enzyme design approach, as discussed in the first part of this chapter, one attempts to utilize the mechanistic understanding of chemical reactions and enzyme structure to create a new catalyst. This approach represents a largely academic research field aiming at fundamental understanding of biocatalysis. Indeed, the invention of functional artificial enzymes can be considered to be the ultimate test for any theory on enzyme mechanisms. Most artificial enzymes, to date, do not fulfill the conditions of catalytic efficiency and price per unit necessary for industrial applications. [Pg.65]

A system has been constructed which allows combined studies of reaction kinetics and catalyst surface properties. Key elements of the system are a computer-controlled pilot plant with a plug flow reactor coupled In series to a minireactor which Is connected, via a high vacuum sample transfer system, to a surface analysis Instrument equipped with XFS, AES, SAM, and SIMS. When Interesting kinetic data are observed, the reaction Is stopped and the test sample Is transferred from the mlnlreactor to the surface analysis chamber. Unique features and problem areas of this new approach will be discussed. The power of the system will be Illustrated with a study of surface chemical changes of a Cu0/Zn0/Al203 catalyst during activation and methanol synthesis. Metallic Cu was Identified by XFS as the only Cu surface site during methanol synthesis. [Pg.15]

It is felt that the use of electron microbeam methods offers the basis for a revolutionary new approach to the study of catalyst particles. Some results can be obtained immediately but to realise the full potential of the method a considerable amount of further exploration of data collection and data analysis methods will be needed. [Pg.339]

In this work a new approach is desribed, which can help to understand ED over heterogeneous catalysts We also hope that this approach can be used to find new modifiers for enantioselective heterogeneous catalytic reactions. The basis for this approach is the steric shielding known in organic chemistry [7,8]. A chiral template molecule can induce shielding effect (SE) in such a way that it preferentially interacts with one of the prochiral sites of the substrate. If a substrate is preferentially shielded its further reaction can take place only fi"om its unshielded site resulting in ED. [Pg.241]

While it was felt that some of the individual issues above could be addressed using the same synthetic sequence (e.g., alternate catalysts for the reduction step) it seemed unlikely that all the above would be solvable, especially as efforts to replace sodium azide with other nucleophiles had failed. Based on this assessment the team felt it would be necessary to evaluate a fundamentally new approach to taranabant and, in particular, to look for a method for installation of the chiral centers without the intermediacy of an alcohol. [Pg.253]

Abstract Recent advances in synthetic aspects of the rhodium-catalyzed hydroformylation of alkenes are reviewed. Emphasis is given to practical improvements, efficient new catalysts for regioselective and enantioselective hydroformylation, and to applications of the reaction in organic synthesis. Furthermore, new developments in directed hydroformylation are covered as well as new approaches toward efficient hydroformylation catalysts employing the concept of self-assembly. [Pg.147]

Santhosh Kumar, M., Schwidder, M., Grunert, W. et al. (2004) On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DcNOr catalysts New insights by a combined EPR and UV/VIS spectroscopic approach, J. Catal., 227, 384. [Pg.135]

The above example outlines a general problem in immobilized molecular catalysts - multiple types of sites are often produced. To this end, we are developing techniques to prepare well-defined immobilized organometallic catalysts on silica supports with isolated catalytic sites (7). Our new strategy is demonstrated by creation of isolated titanium complexes on a mesoporous silica support. These new materials are characterized in detail and their catalytic properties in test reactions (polymerization of ethylene) indicate improved catalytic performance over supported catalysts prepared via conventional means (8). The generality of this catalyst design approach is discussed and additional immobilized metal complex catalysts are considered. [Pg.268]

Building on the approach that allows optimization of biological systems through evolution, this would let a system produce the optimal new substance, and produce it as a single product rather than as a mixture from which the desired component must be isolated and identified. Self-optimizing systems would allow visionary chemical scientists to use this approach to make new medicines, catalysts, and other important chemical products—in part by combining new approaches to informatics with rapid experimental screening methods. [Pg.10]

There is another approach that is increasingly part of synthesis the use of enzymes as catalysts. This approach is strengthened by the new ability of chemists and molecular biologists to modify enzymes and change their properties. There is also interest in the use of artificial enzymes for this purpose, either those that are enzyme-like but are not proteins, or those that are proteins but based on antibodies. Catalytic antibodies and nonprotein enzyme mimics have shown some of the attractive features of enzymes in processes for which natural enzymes are not suitable. [Pg.32]

A wide variety of new approaches to the problem of product separation in homogeneous catalysis has been discussed in the preceding chapters. Few of the new approaches has so far been commercialised, with the exceptions of a the use of aqueous biphasic systems for propene hydroformylation (Chapter 5) and the use of a phosphonium based ionic liquid for the Lewis acid catalysed isomerisation of butadiene monoxide to dihydrofuran (see Equation 9.1). This process has been operated by Eastman for the last 8 years without any loss or replenishment of ionic liquid [1], It has the advantage that the product is sufficiently volatile to be distilled from the reactor at the reaction temperature so the process can be run continuously with built in product catalyst separation. Production of lower volatility products by such a process would be more problematic. A side reaction leads to the conversion of butadiene oxide to high molecular weight oligomers. The ionic liquid has been designed to facilitate their separation from the catalyst (see Section 9.7)... [Pg.237]

Ducreux, O., Lynch, J., Rebours, B., Roy, M., and Chaumette, P. 1998. In situ characterization of cobalt based Fischer-Tropsch catalysts A new approach to the active phase. Stud. Surf. Sci. Catal. 119 125-30. [Pg.80]

Rieger B, Deisenhofer S, Feifel T, Kukral J, Klinga M, Leskela M (2003) Asymmetric metallocene catalysts based on dibenzothiophene a new approach to high molecular weight polypropylene plastomers. Organometallics 22 3495-3501... [Pg.62]

New approaches to catalyst recovery and reuse have considered the use of membrane systems permeable to reactants and products but not to catalysts (370). In an attempt to overcome the problem of inaccessibility of certain catalytic sites in supported polymers, some soluble rho-dium(I), platinum(II), and palladium(II) complexes with noncross-linked phosphinated polystyrene have been used for olefin hydrogenation. The catalysts were quantitatively recovered by membrane filtration or by precipitation with hexane, but they were no more active than supported... [Pg.367]

Our new approach has proven its initial value in both palladium-(Schareina et al. 2004) and copper-catalyzed cyanations (Schareina et al. 2005) and has been adopted by other groups. Very recently, in a joint collaboration with Saltigo GmbH we developed a new and improved copper-based catalyst system, which allows for efficient cyanations of a variety of aromatic and heteroaromatic halides. Importantly, notoriously difficult substrates react in excellent yield and selectivity, making the method applicable on an industrial scale. [Pg.114]

Solid-supported technologies are already well established methods in medicinal chemistry and automated synthesis. Over the last couple of years new trends have evolved in this field which are of utmost importance as they have the potential to revolutionize the way chemical synthesis especially for library production is performed. Microchip-based synthesis technologies and multistep sequences with solid-supported catalysts or reagents in flow-through systems are only two spectacular examples. A new approach is the use of solid-supported systems for the scale-up of chemical reactions thereby enabling the rapid and smooth transition from discovery to development units. [Pg.247]

The phosphonium salt 21 having a multiple hydrogen-bonding site which would interact with the substrate anion was applied to the phase transfer catalyzed asymmetric benzylation of the p-keto ester 20,[18 191 giving the benzylated P-keto ester 22 in 44% yield with 50% ee, shown in Scheme 7 Although the chemical yield and enantiomeric excess remain to be improved, the method will suggest a new approach to the design of chiral non-racemic phase transfer catalysts. [Pg.126]

D. J. Cole-Hamilton, Homogeneous Catalysis-New Approaches to Catalyst Separation, Recovery, and Recycling, Science, 2003, 299,... [Pg.139]

An interesting new approach to phosphorescent polymers has been reported by Thompson and coworkers [79]. Using a living polymerization reaction (with alkoxyamine catalyst), they have prepared the polymer 66 (Chart 4.22), which contains the electron transport oxadiazole... [Pg.440]


See other pages where Catalyst new approaches is mentioned: [Pg.450]    [Pg.464]    [Pg.89]    [Pg.450]    [Pg.464]    [Pg.89]    [Pg.405]    [Pg.601]    [Pg.347]    [Pg.184]    [Pg.85]    [Pg.21]    [Pg.107]    [Pg.279]    [Pg.261]    [Pg.91]    [Pg.60]    [Pg.277]    [Pg.532]    [Pg.329]    [Pg.241]    [Pg.193]    [Pg.215]    [Pg.216]    [Pg.241]    [Pg.1416]    [Pg.1433]    [Pg.331]    [Pg.219]   


SEARCH



Approach for Discovery and Optimisation of New Catalysts

Catalyst approaches

Friday pm 29- New approaches to catalyst preparation

New approaches to catalyst preparation

New catalysts

© 2024 chempedia.info