Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis purification

Zeolites are traditionally used in catalysis/purification and separation applications in the petrochemical industry but are rapidly finding new uses. This section discusses membranes for low-dielectric-constant, corrosion-resistant, hydrophilic and antimicrobial, and pervaporation applications. [Pg.251]

Adsorption is of technical importance in processes such as the purification of materials, drying of gases, control of factory effluents, production of high vacua, etc. Adsorption phenomena are the basis of heterogeneous catalysis and colloidal and emulsification behaviour. [Pg.16]

Gumylphenol. -Cumylphenol (PGP) or 4-(1-methyl-l-phenylethyl)phenol is produced by the alkylation of phenol with a-methylstyrene under acid catalysis. a-Methylstyrene is a by-product from the production of phenol via the cumene oxidation process. The principal by-products from the production of 4-cumylphenol result from the dimerization and intramolecular alkylation of a-methylstyrene to yield substituted indanes. 4-Cumylphenol [599-64-4] is purified by either fractional distillation or crystallization from a suitable solvent. Purification by crystallization results in the easy separation of the substituted indanes from the product and yields a soHd material which is packaged in plastic or paper bags (20 kg net weight). Purification of 4-cumylphenol by fractional distillation yields a product which is almost totally free of any dicumylphenol. The molten product resulting from purification by distillation can be flaked to yield a soHd form however, the soHd form of 4-cumylphenol sinters severely over time. PGP is best stored and transported as a molten material. [Pg.66]

Methylphenol. y -Cresol is produced synthetically from toluene. Toluene is chlorinated and the resulting chlorotoluene is hydrolyzed to a mixture of methylphenols. Purification by distillation gives a mixture of 3-methylphenol and 4-methylphenol since they have nearly identical boiling points. Reaction of this mixture with isobutylene under acid catalysis forms 2,6-di-/ f2 -butyl-4-methylphenol and 2,4-di-/ f2 -butyl-5-methylphenol, which can then be separated by fractional distillation and debutylated to give the corresponding 3- and 4-methylphenols. A mixture of 3- and 4-methylphenols is also derived from petroleum cmde and coal tars. [Pg.67]

Possible role of the induced acidity and basicity in catalysis and environmental chemistry is discussed. The suggested mechanism explains the earlier reported promotive effect of some gases in the reactions catalyzed by Bronsted acid sites. Interaction between the weakly adsorbed air pollutants could lead to the enhancement of their uptake by aerosol particles as compared with separate adsoi ption, thus favoring air purification. [Pg.56]

Activated Carbon for Process Water Treatment Activated Carbon from CPL Carbon Link - Activated carbon from CPL Carbon Link for liquid and gas phase purification by adsorption. Activated carbons for all applications including chemical, water, air, solvent recovery, gold recovery, food, automotive, industrial, catalysis.. http //www.activated-carbon.com. [Pg.442]

For exchange of non-labile organic hydrogen atoms, acid-base catalysis (or some other catalytic hydrogen-transfer agent such as palladium or platinum) is required. The method routinely gives tritiated products having a specific activity almost 1000 times that obtained by the Wilzbach method shorter times are required (2-12h) and subsequent purification is easier. [Pg.42]

Analysis and purification of the product solution is best accomplished by gas chromatography. The submitters used a 500 cm. by 0.6 cm. aluminum or polyethylene column packed with 21% oxydipropionitrile on Chromosorb P with column, injector and detector operated at 25° and a flow rate of 50 ml./minute. Under these conditions the retention times of bicyclopentene and cyclopentadiene were 3 and 5 minutes, respectively, beyond that of the coinjected air. Since bioyclo-pentene is extremely labile with respect to acid catalysis any contact with water, hydroxylic solvents, and nonprotic acids should be avoided (Note 11). Bicyclopentene stored at —78° in anhydrous tetrahydro-furan is stable indefinitely. [Pg.18]

Product purification not only includes recovery of the catalyst. It also consists of removal of co-catalysts, decomposition products of the ligands, unconverted reactants, and byproducts. The latter two, of course, are not specific for homogeneous catalysis. [Pg.115]

With the advance of three-way catalysis for pollution control, used mainly in automobile catalytic conversion but also for the purification of gas exhausts from stationary sources, a need has arisen to develop a basic understanding of the reactions associated with the reduction of nitrogen oxides on transition metal catalytic surfaces [1,2]. That conversion is typically carried out by using rhodium-based catalysts [3], which makes the process quite expensive. Consequently, extensive effort has been placed on trying to minimize the amount of the metal needed and/or to replace it with an alternatively cheaper and more durable active phase. However, there is still ample room for improvement in this direction. By building a molecular-level picture of theprocesses involved,... [Pg.67]

A literature procedure whereby bromopyrimidine is oxidised by excess peroxy-acetic acid in acetone, with sulfuric acid catalysis, was being scaled up. The crude product from the fourth batch at two molar scale was filtered out and allowed to dry to dry in the sintered glass funnel over the weekend. An explosion occurred when it was scraped out to complete purification on the Monday. This was considered due to acetone peroxides, which had probably concentrated locally by wicking or sublimation. [Pg.481]

Kita, K., Nakase, K.-i., Yanase, H. et al. (1999) Purification and characterization of new aldehyde reductases from Sporobolomyces salmonicolor AKU4429. Journal of Molecular Catalysis B-Enzymatic, 6 (3), 305-313. [Pg.163]

Izumi, Y., and Ohshiro, T., Purification and characterization of enzymes involved in desulfurization of dibezothiophene in fossil fuels. Journal, of Molecular Catalysis B-Enzymatic, 2001. 11(4-6) pp. 1061-1064. [Pg.213]

Chemical, thermal, or enzymatic treatments are required to obtain analysable samples. Two typical methods used to achieve the hydrolysis of peptidic bonds are enzymatic and chemical catalysis [73]. The reaction times for enzymatic hydrolysis are long and typically lie in the range of 4 8 h [47]. Additionally, they demand purification procedures to get rid of the excess enzyme that could interfere in the protein identification. Due to these drawbacks, this method of hydrolysis finds limited use in the conservation science field. [Pg.243]

Since better selectivity was obtained when the ligands were removed from the dihydropyran-derivatized polymer support, after synthesis they were cleaved from the polymer and used in catalysis without purification. Comparable selectivities were obtained with ligands that were used directly without purification and selected examples where the ligands were purified prior to use. For such an approach to be useful in catalyst development, it is critical that the material from the synthesis be of sufficient purity to be used without purification. [Pg.437]

The expected contribution of catalysis in this area will derive both from the availability, at low processing costs, of new monomers obtained from biomasses and from the development of an optimized combination of biotechnology processes with classical and new biocatalytic processes. Research priorities for catalysis in the area of polymers from renewable materials for packaging, furniture, domestic water purification and recycling include the need to develop novel catalysts, e.g., for functionalization of polymeric and dendrimeric materials, with side-chain photoactive molecular switches (to be used as smart materials), or the development of multifunctional materials, combining, for example, nanofiltration with catalytic reactivity. [Pg.402]


See other pages where Catalysis purification is mentioned: [Pg.729]    [Pg.2789]    [Pg.251]    [Pg.371]    [Pg.402]    [Pg.196]    [Pg.331]    [Pg.224]    [Pg.242]    [Pg.157]    [Pg.172]    [Pg.992]    [Pg.73]    [Pg.115]    [Pg.68]    [Pg.5]    [Pg.7]    [Pg.43]    [Pg.78]    [Pg.162]    [Pg.100]    [Pg.147]    [Pg.381]    [Pg.90]    [Pg.78]    [Pg.810]    [Pg.14]    [Pg.1260]    [Pg.113]    [Pg.436]    [Pg.140]    [Pg.293]   


SEARCH



© 2024 chempedia.info