Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cat Cracker

The Snamprogetti fluidized-bed process uses a chromium catalyst in equipment that is similar to a refinery catalytic cracker (1960s cat cracker technology). The dehydrogenation reaction takes place in one vessel with active catalyst deactivated catalyst flows to a second vessel, which is used for regeneration. This process has been commercialized in Russia for over 25 years in the production of butenes, isobutylene, and isopentenes. [Pg.368]

Specimen Location Surface condenser bed air biower cat cracker regeneration system... [Pg.235]

Hydrofining usually involves only minor molecular changes of the feed with hydrogen consumption in the range of about 100 to 1,000 cu.ft./bbl. Typical applications include desulfurization of a wide range of feeds (naphtha, light and heavy distillates, and certain residua) and occasional pretreatment of cat cracker feeds. [Pg.11]

Perhaps the most important concern in cyclone selection is that they have the required collection efficiency. In a large cat cracker, two stages of cyclones in series must have a combined efficiency of 99.99% to keep catalyst losses to an acceptable... [Pg.44]

The Hj/400°FVT streams from each system are sent to separate flash drums where the bulk of the Cj and lighter material is removed. The virgin and cat cracker streams from the flash drums go to separate debutanizers while the Powerformer stream goes to an absorber-deethanizer followed by a debutanizer. The Q and lighter overhead streams from the virgin and cat cracker debutanizers are sent to this absorber- deethanizer for final deethanization. In the flow scheme shown this tower does not have a separate lean oil. It is called an absorber-deethanizer because the Powerformer stream serves in part to absorb the Cj and C4 components in the streams from the debutanizers. A separate lean oil stream is added in cases where higher Q and Q recoveries are justified. [Pg.99]

Fluid catalytic cracking (FCC) continues to play a key role in an integrated refinery as the primary conversion process. For many refiners, the cat cracker is the key to profitability in that the successful operation of the unit determines whether or not the refiner can remain competitive in today s market. [Pg.1]

Approximately 350 cat crackers are operating worldwide, with a total processing capacity of over 12.7 million barrels per day [1]. Most of the existing FCC units have been designed or modified by six major technology licensers ... [Pg.1]

Before proceeding, it is helpful to examine how a typical cat cracker fits into the refinery process. A petroleum refinery is composed of several processing units that convert raw crude oil into usable products such as gasoline, diesel, and jet fuel (Figure 1-4). [Pg.2]

The gas oil feed for the conventional cat cracker comes primarily from the atmospheric column, the vacuum tower, and the delayed coker. In addition, a number of refiners blend some atmospheric or vacuum resid into the feedstocks to be processed in the FCC unit. [Pg.6]

Most refineries produce sufficient gas oil to meet the cat crackers demand. However, in those refineries in which the gas oil produced does not meet the cat cracker capacity, it may be economical to supplement feed by purchasing FCC feedstocks or blending some residue. The refinery-produced gas oil and any supplemental FCC feedstocks are generally combined and sent to a surge drum, which provides a steady flow of feed to the charge pumps. This drum can also separate any water or vapor that may be in the feedstocks. [Pg.6]

The reactor-regenerator is the heart of the FCC process. In a modem cat cracker, virtually all the reactions occur in 1.5 to 3.0 seconds before the catalyst and the products are separated in the reactor. [Pg.7]

The teed to the cat cracker in a typical refinery is a blend of gas oils from such operating units as the crude, vacuum, solvent deasphalting, and coker. Some refiners purchase outside FCC feedstocks to keep the FCC feed rate maximized. Other refiners process atmospheric or vacuum residue in their cat crackers. In recent years, the trend has been toward heavier gas oils and residue. Residue is most commonly defined as the fraction of feed that boils above 1,050°F (565 C). Each FCC feed stream has different distillation characteristics. [Pg.47]

One area of cat cracking not fully understood is the proper determination of carbon residue of the feed and how it affects the unit s coke make. Carbon residue is defined as the carbonaceous residue formed after thermal destruction of a sample. Cat crackers are generally limited in coke burn capacity, therefore, the inclusion of residue in the feed produces more coke and forces a reduction in FCC throughput. Conventional gas oil feeds generally have a carbon residue less than 0,5 wt for feeds containing resid, the number can be as high as 15 wt lf. [Pg.52]

In most units, the increase in hydrogen make does not increase coke yield the coke yield in a cat cracker is constant (Chapter 5). The coke yield does not go up because other unit constraints, such as the regenerator temperature and/or wet gas compressor, force the operator to reduce charge or severity. High hydrogen yield also affects the recovery of Cj-H components in the gas plant. Hydrogen works as an inert and changes the liquid-vapor ratio in the absorbers. [Pg.64]

Water soluble salts that are carried over from the desalter. An effective desalting operation is more important than ever when processing heavy feedstocks to the cat cracker. Chloride salts are usually water soluble and are removed from raw crude in the desalter. However, some of these salts can be carried over with desalted crude. [Pg.67]

UCS, rare earth, and sodium are just three of the parameters that are readily available to characterize the zeolite properties. They provide valuable information about catalyst behavior in the cat cracker. If required, additional tests can be conducted to examine other zeolite properties. [Pg.93]

Depending on the design of a cat cracker, the circulating inventory can contain 30-1,200 tons of catalyst. Fresh catalyst is added to the unit continually to replace the catalyst lost by attrition and to maintain... [Pg.109]

For many years, cat cracker operators have used additive compounds for enhancing cat cracker performance. The main benefits of these additives (catalyst and feed additives) are to alter the FCC yields and reduce the amount of pollutants emitted from the regenerator. The additives discussed in this section are CO promoter, SO reduction, ZSM-5, and antimony. [Pg.117]

ZSM-5 s effectiveness depends on several variables. The cat crackers that process highly paraffinic feedstock and have lower base octane will receive the greatest benefits of using ZSM-5. ZSM-5 will have little effect on improving gasoline octane in units that process naphthenic feedstock or operate at a high conversion level. [Pg.121]

For a given catalyst and feedstock, catalytic coke yield is a direct function of conversion. However, an optimum riser temperature will minimize coke yield. For a typical cat cracker, this temperature is... [Pg.135]

The introduction of zeolites into the FCC catalyst in the early 1960s drastically improved the performance of the cat cracker reaction products. The catalyst acid sites, their nature, and strength have a major influence on the reaction chemistry. [Pg.136]

The only proper way to monitor the performance of a cat cracker is by periodic material and heat balance surveys on the unit. By carrying out these tests frequently, one can collect, trend, and evaluate the unit operating data. Additionally, meaningful technical service to optimize the unit operation should be based on regular test runs. [Pg.139]

Complete data collection should be carried out weekly. Since changes in the unit are continuous, regular surveys permit distinction among the effects of feedstock, catalyst, and operating conditions. An accurate assessment of a cat cracker operation requires reliable plant data. A reasonable weight balance should have a 98% to 102% closure. [Pg.140]

A cat cracker continually adjusts itself to stay in heat balance. This means that the reactor and regenerator heat flows must be equal (Figure 5-4). Simply stated, the unit produces and bums enough coke to provide energy to ... [Pg.158]

The calculation of heat balance around the reactor is illustrated in Example 5-6. As shown, the unknown is the heat of reaction. It is calculated as the net heat from the heat balance divided by the feed flow in weight units. This approach to determining the heat of reaction is acceptable for unit monitoring. However, in designing a new cat cracker, a correlation is needed to calculate the heat of reaction. The heat of reaction is needed to specify other operating parameters, such... [Pg.162]

A survey of the reactor-regenerator circuit of a 50,000 bpd (331 m /hr) cat cracker produced these results ... [Pg.172]

The only proper method to evaluate the performance of a cat cracker is by conducting a material and heat balance. One balance will tell where the unit is a series of daily or weekly balances will tell where the unit is going. The heat and weight balance can be used to evaluate previous changes or predict the result of future changes. As discussed in the next chapter, material and heat balances are the foundation for determining the effects of operating variables. [Pg.180]

Davison Div., W.R. Grace Co., Cat Cracker Heat and Material Balance Calculations, Grace Davison Catalagram, No. 59, 1980. [Pg.181]

The previous chapters explained the operation of a cat cracker. However, the purpose of the FCC unit is to maximize profitability for the refinery. The cat cracker provides the conversion capacity that every refinery needs to survive. All crudes have heavy gas oils and fuel oil unfortunately, the market for these products has disappeared. [Pg.182]

FCC economics makes the refinery a viable entity. Over the years, refineries without cat crackers have been shut down because they were not profitable. [Pg.182]

The cat cracker converts less valuable gas oils to more valuable products. A major objective of most FCC units is to maximize the conversion of gas oil to gasoline and LPG. The products from the cat cracker are ... [Pg.182]

The overhead stream from the debutanizer or stabilizer is a mix of C, s and C4 s, usually referred to as LPG (liquefied petroleum gas). It is rich in olefins, propylene, and butylene. These light olefins play an important role in the manufacture of reformulated gasoline (RFG). Depending on the refinery s configuration, the cat cracker s LPG is used in the following areas ... [Pg.183]

FCC gasoline has always been the most valuable product of a cat cracker unit. FCC gasoline accounts for about 35 vol% of the total U.S. gasoline pool. Historically, the FCC has been run for maximum gasoline yield with the highest octane. [Pg.186]

FCC gasoline contains 0.5 to 1.3 vol% benzene. Since it accounts for about 35 vol% of the gasoline pool, it is important to know what affects the cat cracker gasoline benzene levels. The benzene content in the FCC gasoline can be reduced by ... [Pg.190]


See other pages where Cat Cracker is mentioned: [Pg.1573]    [Pg.203]    [Pg.210]    [Pg.221]    [Pg.40]    [Pg.43]    [Pg.80]    [Pg.29]    [Pg.54]    [Pg.105]    [Pg.113]    [Pg.115]    [Pg.115]    [Pg.118]    [Pg.123]    [Pg.139]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



CAT

Cat cracker bottoms

Cat cracker feed

Crackers

© 2024 chempedia.info