Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonylation of methyl acetate

One of the main uses of acetic anhydride is in the manufacture of cellulose acetate. Cellulose acetate is used in the production of plastics, coating chemicals, etc. Eastman Chemical Company has operated a highly successful rhodium-based acetic anhydride manufacturing process, based on the carbonylation of methyl acetate, for over 25 years. [Pg.104]

In this process, coal is gasified to give synthesis gas, which is then converted to methanol by a heterogeneous catalytic process. Reaction of methanol with acetic acid by reactive distillation gives methyl acetate, which is then reacted with CO to give acetic anhydride. The cellulose ester is made by reacting acetic anhydride with cellulose. The acetic acid required for the synthesis of methyl acetate comes from recycling the acetic acid produced in the manufacture of cellulose ester. [Pg.104]

Here there is a product-forming reaction between lithium acetate and acetyl iodide. This is then followed by the reaction between lithium iodide and methyl acetate. The lithium-promoted pathway increases the overall rate of product formation by about 10 times and makes the manufacturing process commercially viable. [Pg.105]

The rate of acetic anhydride formation shows a complex dependence on the concentrations of rhodium, methyl iodide, and lithium. Under conditions where the lithium concentration is high, the rate is first order with respect to rhodium and methyl iodide. However, with low lithium concentration the rate is independent, i.e., zero order, with respect to the concentrations of rhodium and methyl iodide. These observations are easily explained by identifying the slowest step under these two different sets of conditions. [Pg.105]

With enough lithium, the rates of reactions involving the lithium salts are obviously high. Under these conditions, oxidative addition of methyl iodide to 4.5 is the slowest step. With low lithium concentration, any one of the steps that involve lithium salts becomes the rate-determining one. The rate in such a situation is independent of rhodium and methyl iodide concentrations. [Pg.105]


The Pd-catalyzed reductive carbonylation of methyl acetate with CO and H2 affords acetaldehyde. The net reaction is the formation of acetaldehyde from MeOH, CO, and H2P4]. Methyl formate (109) is converted into AcOH under CO pressure in the presence of Lil and Pd(OAc)2[95],... [Pg.540]

Methyl Acetate Garbonylation. Anhydride can be made by carbonylation of methyl acetate [79-20-9] (28) in a manner analogous to methanol carbonylation to acetic acid. Methanol acetylation is an essential first step in anhydride manufacture by carbonylation. See Figure 1. The reactions are... [Pg.77]

The Eastman acetic anhydride [108-24-7] process provides an extension of carbonylation chemistry to carboxyUc acid esters. The process is based on technology developed independendy in the 1970s by Eastman and Halcon SD. The Eastman acetic anhydride process involves carbonylation of methyl acetate [79-20-9] produced from coal-derived methanol and acetic acid [64-19-7]. [Pg.166]

This process is one of the three commercially practiced processes for the production of acetic anhydride. The other two are the oxidation of acetaldehyde [75-07-0] and the carbonylation of methyl acetate [79-20-9] in the presence of a rhodium catalyst (coal gasification technology, Halcon process) (77). The latter process was put into operation by Tennessee Eastman in 1983. In the United States the total acetic anhydride production has been reported to be in the order of 1000 metric tons. [Pg.476]

In an integrated continuous process, cellulose reacts with acetic anhydride prepared from the carbonylation of methyl acetate with carbon monoxide. The acetic acid Hberated reacts further with methanol to give methyl acetate, which is then carbonylated to give additional acetic anhydride (100,101). [Pg.255]

Garbonylation Reaction. The carbonylation of methyl acetate is an important industrial reaction for producing acetic anhydride ... [Pg.390]

Eastman-Halcon A process for making acetic anhydride from syngas. The basic process is the carbonylation of methyl acetate. Methanol is made directly from the carbon monoxide and hydrogen of syngas. Acetic acid is a byproduct of the cellulose acetate manufacture for which the acetic anhydride is needed. The carbonylation is catalyzed by rhodium chloride and chromium hexacarbonyl. [Pg.95]

Evidence has been presented that iodide salts can promote the oxidative addition of Mel to [Rh(CO)2l2]"> the rate-determining step in the Rh cycle [12]. The precise mechanism of this promotion remains unclear formation of a highly nucleophilic dianion, [Rh(CO)2l3]2 , has been suggested, although there is no direct spectroscopic evidence for its detection. Possible participation of this dianion has been considered in a theoretical study [23]. An alternative nucleophilic dianion, [Rh(CO)2l2(OAc)]2 , has also been proposed [31,32] on the basis that acetate salts (either added or generated in situ via Eq. 7) can promote carbonylation. Iodide salts have also been found to be effective promoters for the anhydrous carbonylation of methyl acetate to acetic anhydride [33]. In the absence of water, the catalyst cannot be maintained in its active form ([Rh(CO)2l2]") by addition of Lil alone, and some H2 is added to the gas feed to reduce the inactive [Rh(CO)2l4]. ... [Pg.193]

Figure 6.5. Eastman carbonylation of methyl acetate Two more differences are ... Figure 6.5. Eastman carbonylation of methyl acetate Two more differences are ...
The direct carbonylation of methanol yielding acetic acid, the Monsanto process, represents the best route for acetic acid. Carbonylation of methyl acetate, obtained from methanol and acetic acid, gives acetic anhydride, a technology commercialized by Tennessee Eastman (22). It is noteworthy that this process is based on coal derived synthesis gas to give as the final product cellulose acetate. A combination of Monsanto and Tennessee Eastman technology opens the door for the combined synthesis of acetic acid and acetic anhydride. [Pg.8]

By adjusting the C0 H2 ratio, catalytic systems for the reductive carbonylation of methyl acetate can be tuned to the production of acetic anhydride, ethylidene diacetate or acetaldehyde. [Pg.8]

While the direct carbonylation is well accepted by industry, the reductive and oxidative carbonylations are still in the research and development stage. Using Texaco technology (j, 7/ ) the combined synthesis of ethene and ethanol is feasible via homologation of acids according to Figure 3. Ethene can also be obtained from the reductive carbonylation of methyl acetate to ethyl acetate followed by pyrolysis (2 ). Both routes, so far, lack selectivity. [Pg.8]

In anhydrous mixtures, the rhodium catalyzed carbonylation is enhanced by the presence of hydrogen. Introduction of hydrogen to a rhodium catalyzed carbonylation of methyl acetate increases the reaction rate and maintains catalyst stability (26) when the hydrogen partial pressure is rather low. It leads to reduced products formation, e.g. acetaldehyde and ethylidene diacetat with higher hydrogen partial pressure, in excess of 50 psi (27, 28). This is a clear indication that hydrogen is added to the coordination sphere of the rhodium catalyst. However, in the case of methanol carbonylation, the presence of hydrogen does not enhance the reaction rate or lead... [Pg.69]

Reductive Carbonylation of Methyl Acetate One Step Synthesis ... [Pg.138]

The formation of EDA in a one step reaction that involves the reductive carbonylation of methyl acetate has been achieved (equation 2) ( 1). Alternatively, the substrate of reductive carbonylation can be dimethyl ether instead of methyl acetate which simply integrates into the reaction an initial carbonylation step leading to EDA. [Pg.138]

Concurrent with acetic anhydride formation is the reduction of the metal-acyl species selectively to acetaldehyde. Unlike many other soluble metal catalysts (e.g. Co, Ru), no further reduction of the aldehyde to ethanol occurs. The mechanism of acetaldehyde formation in this process is likely identical to the conversion of alkyl halides to aldehydes with one additional carbon catalyzed by palladium (equation 14) (18). This reaction occurs with CO/H2 utilizing Pd(PPh )2Cl2 as a catalyst precursor. The suggested catalytic species is (PPh3)2 Pd(CO) (18). This reaction is likely occurring in the reductive carbonylation of methyl acetate, with methyl iodide (i.e. RX) being continuously generated. [Pg.142]

As indicated above, hydrogen has a definite influence upon the catalyst. This is manifest in several ways, (a) Small amounts of hydrogen effectively keep this same rhodium catalyst active and in solution in the carbonylation of methyl acetate. (b) The rates of... [Pg.143]

An alternative scheme to simultaneous formation of acetaldehyde and acetic anhydride could entail the carbonylation of methyl acetate to acetic anhydride which is subsequently reduced to acetaldehyde and acetic acid. The reaction of acetaldehyde with excess anhydride would form EDA. In fact, Fenton has described production of EDA by the reduction of acetic anhydride using both rhodium and palladium salts as catalysts when modified with triphenylphosphine (26). Two possible mechanisms for the reduction are postulated in equation 16. [Pg.144]

Reductive Carbonylation of Methanol. As discussed earlier, rhodium based catalysts are capable of catalyzing the reductive carbonylation of methyl acetate to ethylidene diacetate ( 1), as well as the carbonylation of methyl acetate to acetic anhydride (16). These reaction proceed only, wjjen, tjie reaction environment... [Pg.147]

It was found that a nickel-activated carbon catalyst was effective for vapor phase carbonylation of dimethyl ether and methyl acetate under pressurized conditions in the presence of an iodide promoter. Methyl acetate was formed from dimethyl ether with a yield of 34% and a selectivity of 80% at 250 C and 40 atm, while acetic anhydride was synthesized from methyl acetate with a yield of 12% and a selectivity of 64% at 250 C and 51 atm. In both reactions, high pressure and high CO partial pressure favored the formation of the desired product. In spite of the reaction occurring under water-free conditions, a fairly large amount of acetic acid was formed in the carbonylation of methyl acetate. The route of acetic acid formation is discussed. A molybdenum-activated carbon catalyst was found to catalyze the carbonylation of dimethyl ether and methyl acetate. [Pg.176]

Carbonylation of Methyl Acetate on Ni/A.C. Catalysts. Table II shows the catalytic activities of nickel and platinum group metals supported on activated carbon for the carbonylation of methyl acetate. Ruthenium, palladium, or iridium catalysts showed much lower activity for the synthesis of acetic anhydride than the nickel catalyst. In contrast, the rhodium catalyst, which has been known to exhibit an excellent carbonylation activity in the homogeneous system (1-13), showed nearly the same activity as the nickel catalyst but gave a large amount of acetic acid. [Pg.179]

Table V shows the results obtained for the carbonylation of dimethyl ether and methyl acetate with molybdenum catalysts supported on various carrier materials. In the case of dimethyl ether carbonylation, molybdenum-activated carbon catalyst gave methyl acetate with an yield of 5.2% which was about one-third of the activity of nickel-activated carbon catalyst. Silica gel- or y-alumina-supported catalyst gave little carbonylated product. Similar results were obtained in the carbonylation of methyl acetate. The carbonylation activity occured only when molybdenum was supported on activated carbon, and it was about half the activity of nickel-activated carbon catalyst. Table V shows the results obtained for the carbonylation of dimethyl ether and methyl acetate with molybdenum catalysts supported on various carrier materials. In the case of dimethyl ether carbonylation, molybdenum-activated carbon catalyst gave methyl acetate with an yield of 5.2% which was about one-third of the activity of nickel-activated carbon catalyst. Silica gel- or y-alumina-supported catalyst gave little carbonylated product. Similar results were obtained in the carbonylation of methyl acetate. The carbonylation activity occured only when molybdenum was supported on activated carbon, and it was about half the activity of nickel-activated carbon catalyst.
Figure 9 shows the product yields as a function of operational pressure in the carbonylation of methyl acetate. The yield of acetic anhydride increased monotonically with increasing pressure, while that of methane was almost unchanged. The yield of acetic acid increased up to 30 atm and then decreased above that pressure. Acetic anhydride was formed with a yield of 15% and a selectivity of 83% at 45 atm, indicating that high operational pressure was favorable for the selective formation of acetic anhydride on the Mo/A.C. catalyst. [Pg.186]

The carbonylation of methyl acetate to acetic anhydride is likely to become an industrial process in the near future 424,427 RhCl3-3H20 is typically used as catalyst precursor and an iodide promoter is used. A mechanistic study indicated that methyl iodide formed from the ester and HI is carbonylated as in acetic acid synthesis (Scheme 26). The resulting acyl, perhaps via reductive elimination of acetyl iodide, converts the acetic acid formed in the ester cleavage to acetic anhydride.428 430 [RhI(CO)(PPh3)2] also catalyzes the reaction though apparently more slowly than complex (95).430,431 The mechanism of this reaction is given in Scheme 27. [Pg.273]

Iridium complexes in the presence of iodide also catalyze the carbonylation of methyl acetate to acetic anhydride (equation 69). The reaction mechanism is similar to that of Scheme 33. The ester reacts with HI to give methyl iodide which is carbonylated as in Scheme 33 to acetyl iodide. This reacts with acetic acid to give the anhydride.429 430... [Pg.278]


See other pages where Carbonylation of methyl acetate is mentioned: [Pg.69]    [Pg.474]    [Pg.183]    [Pg.102]    [Pg.192]    [Pg.118]    [Pg.118]    [Pg.66]    [Pg.133]    [Pg.140]    [Pg.147]    [Pg.149]    [Pg.149]    [Pg.158]    [Pg.179]    [Pg.182]    [Pg.252]    [Pg.183]    [Pg.330]   


SEARCH



Acetals methylation

Acetates methylated

Acetic carbonylation

By carbonylation of methyl acetate

CARBONYLATION OF METHANOL AND METHYL ACETATE

Carbonyl methylation

Methyl acetals

Methyl acetate

Methyl acetate carbonylation

Methyl carbonylation

Rhodium-Catalyzed Carbonylation of Methyl Acetate to Acetic Anhydride

© 2024 chempedia.info