Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic anhydride, formation

Acetic anhydride formation has been observed under such conditions. ... [Pg.243]

Reaction (9) generates methyl iodide for the oxidative addition, and reaction (10) converts the reductive elimination product acetyl iodide into the product and it regenerates hydrogen iodide. There are, however, a few distinct differences [2,9] between the two processes. The thermodynamics of the acetic anhydride formation are less favourable and the process is operated much closer to equilibrium. (Thus, before studying the catalysis of carbonylations and carboxylations it is always worthwhile to look up the thermodynamic data ) Under standard conditions the AG values are approximately ... [Pg.116]

Concurrent with acetic anhydride formation is the reduction of the metal-acyl species selectively to acetaldehyde. Unlike many other soluble metal catalysts (e.g. Co, Ru), no further reduction of the aldehyde to ethanol occurs. The mechanism of acetaldehyde formation in this process is likely identical to the conversion of alkyl halides to aldehydes with one additional carbon catalyzed by palladium (equation 14) (18). This reaction occurs with CO/H2 utilizing Pd(PPh )2Cl2 as a catalyst precursor. The suggested catalytic species is (PPh3)2 Pd(CO) (18). This reaction is likely occurring in the reductive carbonylation of methyl acetate, with methyl iodide (i.e. RX) being continuously generated. [Pg.142]

EDA formation are lower than for acetic anhydride formation by car-bonylation. (c) Selective reductive chemistry occurs and rates are dependent on hydrogen partial pressure. [Pg.144]

Acetic Anhydride. Formation of acetyl peroxide from mixtures of barium peroxide and acetic anhydride results in a violent explosion.11... [Pg.65]

This final reaction step of the carbonylation mechanism is the primary distinguishing feature of each carbonylation process. A sufficient concentration of water or acetic acid in the reactor is therefore necessary to achieve high acetic acid or acetic anhydride formation rates respectively. [Pg.105]

The most studied ester carbonyiation reaction is that of methyl acetate to acetic anhydride. This reaction is practiced commercially by E. Kodak, nie catalyst consists of Rh and a mixture of promoters that include Cr and CH3I. For example, a mixture of 350 parts methyl acetate, 2.25 parts RhClj HaO, 57 parts CH3I, and 17 parts CrfCO) in 90 parts acetic acid was heated at 175°C under 2.5 MPa pressure of CO for 1 hr to give 54% acetic anhydride. The observed rate of acetic anhydride formation is 5 MHr at optimum operating conditions of 170-200° and 3.5 MPa CO . Marked improvements in rate and catalyst stability were made by the addition of lithium salts or Lil . In part, it is thought that Lil cleaves methyl acetate as shown in the highly simplified reaction mechanism ... [Pg.541]

CH3CO3CCH3 (acetic anhydride) Formation of 14.6.5.3. CH3CHOHCO2H (lactic acid) Formation of 14.3.6,2.4. [Pg.784]

Typical rate enhancements and favourable equilibria of intramolecular reactions are illustrated by some reactions of succinic acid and its derivatives [15], The equilibrium constant for succinic anhydride formation from succinic acid (Eqn. 31) is 3 X 10 moles/1 more favourable than that for acetic anhydride formation from acetic acid (Eqn. 32), an analogous intermolecular reaction. A similar situation exists... [Pg.17]

Acetic acid and acetyl iodide react to give acetic anhydride and HI. The latter reacts with methyl acetate to regenerate acetic acid and methyl iodide. This pathway of acetic anhydride formation, however, is inefficient. As shown in Figure 4.4, there is another lithium salt-promoted pathway that contributes significantly to product formation. [Pg.105]

The rate of acetic anhydride formation shows a complex dependence on the concentrations of rhodium, methyl iodide, and lithium. Under conditions where the lithium concentration is high, the rate is first order with respect to rhodium and methyl iodide. However, with low lithium concentration the rate is independent, i.e., zero order, with respect to the concentrations of rhodium and methyl iodide. These observations are easily explained by identifying the slowest step under these two different sets of conditions. [Pg.105]

Hydroxamic acid formation. To 0 1 g. of acetic anhydride, add 0 1 g. of hydroxylamine hydrochloride and 5 ml. of 10% NaOH solution. Boil the mixture for i minute, cool and acidify with dilute... [Pg.365]

Method B. In a 500 ml. round-bottomed flask, provided with a reflux condenser protected by a cotton wool (or calcium chloride) drying tube, place 59 g. of succinic acid and 102 g. (94-5 ml.) of redistilled acetic anhydride. Reflux the mixture gently on a water bath with occasional shaking until a clear solution is obtamed ca. 1 hour), and then for a further hour to ensure the completeness of the reaction. Remove the complete assembly from the water bath, allow it to cool (observe the formation of crystals), and finally cool in ice. Collect the succinic anhydride as in Method A. The yield is 45 g., m.p. 119-120°. [Pg.375]

Formation - acetic anhydride, pyridine - acetyl chloride, pyridine... [Pg.63]

The kinetics of nitration in acetic anhydride are complicated. In addition to the initial reaction between nitric acid and the solvent, subsequent reactions occur which lead ultimately to the formation of tetranitromethane furthermore, the observation that acetoxylation accompanies the nitration of the homologues of benzene adds to this complexity. [Pg.77]

Evidence from the viscosities, densities, refractive indices and measurements of the vapour pressure of these mixtures also supports the above conclusions. Acetyl nitrate has been prepared from a mixture of acetic anhydride and dinitrogen pentoxide, and characterised, showing that the equilibria discussed do lead to the formation of that compound. The initial reaction between nitric acid and acetic anhydride is rapid at room temperature nitric acid (0-05 mol 1 ) is reported to be converted into acetyl nitrate with a half-life of about i minute. This observation is consistent with the results of some preparative experiments, in which it was found that nitric acid could be precipitated quantitatively with urea from solutions of it in acetic anhydride at —10 °C, whereas similar solutions prepared at room temperature and cooled rapidly to — 10 °C yielded only a part of their nitric acid ( 5.3.2). The following equilibrium has been investigated in detail ... [Pg.80]

In addition to the initial reaction between nitric acid and acetic anhydride, subsequent changes lead to the quantitative formation of tetranitromethane in an equimolar mixture of nitric acid and acetic anhydride this reaction was half completed in 1-2 days. An investigation of the kinetics of this reaction showed it to have an induction period of 2-3 h for the solutions examined ([acetyl nitrate] = 0-7 mol 1 ), after which the rate adopted a form approximately of the first order with a half-life of about a day, close to that observed in the preparative experiment mentioned. In confirmation of this, recent workers have found the half-life of a solution at 25 °C of 0-05 mol 1 of nitric acid to be about 2 days. ... [Pg.81]

Certain features of the addition of acetyl nitrate to olefins in acetic anhydride may be relevant to the mechanism of aromatic nitration by this reagent. The rapid reaction results in predominantly cw-addition to yield a mixture of the y -nitro-acetate and y5-nitro-nitrate. The reaction was facilitated by the addition of sulphuric acid, in which case the 3rield of / -nitro-nitrate was reduced, whereas the addition of sodium nitrate favoured the formation of this compound over that of the acetate. As already mentioned ( 5.3. i), a solution of nitric acid (c. i 6 mol 1 ) in acetic anhydride prepared at — 10 °C would yield 95-97 % of the nitric acid by precipitation with urea, whereas from a similar solution prepared at 20-25 °C and cooled rapidly to —10 °C only 30% of the acid could be recovered. The difference between these values was attributed to the formation of acetyl nitrate. A solution prepared at room... [Pg.83]

The authors of this work were concerned chiefly with additions to alkenes, and evidence about the mechanism of aromatic nitration arises by analogy. Certain aspects of their work have been repeated to investigate whether the nitration of aromatic compounds shows the same phenomena ( 5-3-6). It was shown that solutions of acetyl nitrate in acetic anhydride were more powerful nitrating media for anisole and biphenyl than the corresponding solutions of nitric acid in which acetyl nitrate had not been formed furthermore, it appeared that the formation of acetyl nitrate was faster when 95-98% nitric acid was used than when 70 % nitric acid was used. [Pg.85]

The observation of nitration at a rate independent of the concentration and the nature of the aromatic means only that the effective nitrating species is formed slowly in a step which does not involve the aromatic. The fact that the rates of zeroth-order nitration under comparable conditions in solutions of nitric acid in acetic acid, sulpholan and nitromethane differed by at most a factor of 50 indicated that the slow step in these three cases was the same, and that the solvents had no chemical involvement in this step. The dissimilarity in the rate between these three cases and nitration with acetyl nitrate in acetic anhydride argues against a common mechanism, and indeed it is not required from evidence about zeroth-order rates alone that in the latter solutions the slow step should involve the formation of the nitronium ion. [Pg.88]

Nitrations in acetic anhydride, or in solutions containing benzoyl nitrate ( 5.2) or dinitrogen pentoxide ( 4.2.3) have long been associated with the formation from some aromatics of higher proportions of o-nitro-compounds than are formed under other conditions. [Pg.93]

Phenylboronic acid. The orientation of nitration in phenylboronic acid is very susceptible to changes in the medium (table 5.8). The high proportion of o-substitution in acetic anhydride is not attributable to a specific o-reaction, for the nt -ratios of the last tabulated pair of results are not constant. The marked change in the ratio was considered to be due to the formation in acetic anhydride of a complex, as illustrated below, which is 0 -orienting and activated as a result of the -t-1 effect. This species need only be formed in a small concentration to overwhelm... [Pg.98]

Davies and Warren" found that when 1,4-dimethylnaphthalene was treated with nitric acid in acetic anhydride, and the mixture was quenched after 34 hr, a pale yellow solid with an ultraviolet spectrum similar to that of a-nitro-naphthalene was produced. However, if the mixture was allowed to stand for 5 days, the product was i-methyl-4 nitromethylnaphthalene, in agreement with earlier findings. Davies and Warren suggested that the intermediate was 1,4-dimethyl-5 nitronaphthalene, which underwent acid catalysed rearrangement to the final product. Robinson pointed out that this is improbable, and suggested an alternative structure (iv) for the intermediate, together with a scheme for its formation from an adduct (ill) (analogous to l above) and its subsequent decomposition to the observed product. [Pg.222]

This is a way to do this procedure without having to use one of those crazy tube furnaces stuffed with thorium oxide or manganous oxide catalyst [21]. The key here is to use an excess of acetic anhydride. Using even more than the amount specified will insure that the reaction proceeds in the right direction and the bad side reaction formation of dibenzylketone will be minimalized (don t ask). 18g piperonylic acid or 13.6g phenylacetic acid, 50mL acetic anhydride and 50mU pyridine are refluxed for 6 hours and the solvent removed by vacuum distillation. The remaining residue is taken up in benzene or ether, washed with 10% NaOH solution (discard the water layer), and vacuum distilled to get 8g P2P (56%). [Pg.93]

In aprotic conditions acetic anhydride sodium acetate induces formation of a fused ring through an intra molecular condensation. It results in a pyrrolo[2,l-fc]thiazole (39), which constitutes an interesting intermediate for the synthesis of dyes (Scheme 18) (40). [Pg.36]

Direct nitration of aniline and other arylamines fails because oxidation leads to the formation of dark colored tars As a solution to this problem it is standaid practice to first protect the ammo group by acylation with either acetyl chloride or acetic anhydride... [Pg.940]

The cellulose molecule contains three hydroxyl groups which can react and leave the chain backbone intact. These alcohol groups can be esterified with acetic anhydride to form cellulose acetate. This polymer is spun into the fiber acetate rayon. Similarly, the alcohol groups in cellulose react with CS2 in the presence of strong base to produce cellulose xanthates. When extruded into fibers, this material is called viscose rayon, and when extruded into sheets, cellophane. In both the acetate and xanthate formation, some chain degradation also occurs, so the resulting polymer chains are shorter than those in the starting cellulose. [Pg.18]

Isomer separation beyond physical fractional crystallization has been accompHshed by derivatization using methyl formate to make /V-formyl derivatives and acetic anhydride to prepare the corresponding acetamides (1). Alkaline hydrolysis regenerates the analytically pure amine configurational isomers. [Pg.211]


See other pages where Acetic anhydride, formation is mentioned: [Pg.147]    [Pg.70]    [Pg.282]    [Pg.787]    [Pg.18]    [Pg.18]    [Pg.812]    [Pg.816]    [Pg.147]    [Pg.70]    [Pg.282]    [Pg.787]    [Pg.18]    [Pg.18]    [Pg.812]    [Pg.816]    [Pg.116]    [Pg.453]    [Pg.88]    [Pg.221]    [Pg.223]    [Pg.37]    [Pg.52]    [Pg.400]   
See also in sourсe #XX -- [ Pg.766 ]




SEARCH



Acetals formation

Acetate formation

Acetic anhydride formation mechanism from methyl

Acetic formation

Amide formation acetic anhydride

Anhydrides formation

© 2024 chempedia.info