Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel-activated carbon catalysts

It was found that a nickel-activated carbon catalyst was effective for vapor phase carbonylation of dimethyl ether and methyl acetate under pressurized conditions in the presence of an iodide promoter. Methyl acetate was formed from dimethyl ether with a yield of 34% and a selectivity of 80% at 250 C and 40 atm, while acetic anhydride was synthesized from methyl acetate with a yield of 12% and a selectivity of 64% at 250 C and 51 atm. In both reactions, high pressure and high CO partial pressure favored the formation of the desired product. In spite of the reaction occurring under water-free conditions, a fairly large amount of acetic acid was formed in the carbonylation of methyl acetate. The route of acetic acid formation is discussed. A molybdenum-activated carbon catalyst was found to catalyze the carbonylation of dimethyl ether and methyl acetate. [Pg.176]

Table IV shows the reactivities of raw materials and products on a nickel-activated carbon catalyst and the effect of hydrogen on the reactions. When carbon monoxide and hydrogen were introduced into the catalyst, no product was formed. Thus, the hydrogenation of CO does not proceed at all. When methyl iodide was added to the above-mentioned feed, 43% of the methyl iodide was converted to methane. In the presence of methyl iodide small amounts of methane, methanol, and acetic acid were formed from methyl acetate, while small amounts of methane and acetic acid were also formed from acetic anhydride. Hydrogen fed with methyl acetate accelerated the formation of methane and acetic acid remarkably. Table IV shows the reactivities of raw materials and products on a nickel-activated carbon catalyst and the effect of hydrogen on the reactions. When carbon monoxide and hydrogen were introduced into the catalyst, no product was formed. Thus, the hydrogenation of CO does not proceed at all. When methyl iodide was added to the above-mentioned feed, 43% of the methyl iodide was converted to methane. In the presence of methyl iodide small amounts of methane, methanol, and acetic acid were formed from methyl acetate, while small amounts of methane and acetic acid were also formed from acetic anhydride. Hydrogen fed with methyl acetate accelerated the formation of methane and acetic acid remarkably.
Table V shows the results obtained for the carbonylation of dimethyl ether and methyl acetate with molybdenum catalysts supported on various carrier materials. In the case of dimethyl ether carbonylation, molybdenum-activated carbon catalyst gave methyl acetate with an yield of 5.2% which was about one-third of the activity of nickel-activated carbon catalyst. Silica gel- or y-alumina-supported catalyst gave little carbonylated product. Similar results were obtained in the carbonylation of methyl acetate. The carbonylation activity occured only when molybdenum was supported on activated carbon, and it was about half the activity of nickel-activated carbon catalyst. Table V shows the results obtained for the carbonylation of dimethyl ether and methyl acetate with molybdenum catalysts supported on various carrier materials. In the case of dimethyl ether carbonylation, molybdenum-activated carbon catalyst gave methyl acetate with an yield of 5.2% which was about one-third of the activity of nickel-activated carbon catalyst. Silica gel- or y-alumina-supported catalyst gave little carbonylated product. Similar results were obtained in the carbonylation of methyl acetate. The carbonylation activity occured only when molybdenum was supported on activated carbon, and it was about half the activity of nickel-activated carbon catalyst.
Table V. Carbonylation Activities of Supported Molybdenum and Nickel-Activated Carbon Catalysts ... Table V. Carbonylation Activities of Supported Molybdenum and Nickel-Activated Carbon Catalysts ...
Rh > Ir > Ni > Pd > Co > Ru > Fe A plot of the relation between the catalytic activity and the affinity of the metals for halide ion resulted in a volcano shape. The rate determining step of the reaction was discussed on the basis of this affinity and the reaction order with respect to methyl iodide. Methanol was first carbonylated to methyl acetate directly or via dimethyl ether, then carbonylated again to acetic anhydride and finally quickly hydrolyzed to acetic acid. Overall kinetics were explored to simulate variable product profiles based on the reaction network mentioned above. Carbon monoxide was adsorbed weakly and associatively on nickel-activated-carbon catalysts. Carbon monoxide was adsorbed on nickel-y-alumina or nickel-silica gel catalysts more strongly and, in part, dissociatively,... [Pg.208]

Stability of Catalytic Activity of Nickel-Activated Carbon. In Figure 3 are shown the changes in the activity and the product selectivity of a Ni/A.C. catalyst. It is clear from the figure that the activity and the selectivity are fairly stable for several hundreds of hours. After 500 hours, the carbonylated products totaled 18,000 moles per mole of supported nickel. [Pg.211]

The effect of reaction conditions (temperature, pressure, H2 flow, C02 and/or propane flow, LHSV) and catalyst design on reaction rates and selectivites were determined. Comparative studies were performed either continuously with precious-metal fixed-bed catalysts in a trickle-bed reactor, or batchwise in stirred-tank reactors with supported nickel or precious metal on activated carbon catalysts. Reaction products were analyzed by capillary gas chromatography with regard to product composition, by titration to determine iodine and acid value, and by elemental analysis. [Pg.231]

The vapor phase carbonylation of methanol to acetic acid with a nickel on active carbon catalysts was greatly enhanced by addition of hydrogen although 1 ittle hydrogen was incorporated in the products. [Pg.245]

Liquid phase carbonylation of methanol to acetic acid with a rhodium complex catalyst is a well known process (ref. 1). The authors have found that group 8 metals supported on carbonaceous materials exhibit excellent activity for the vapor phase carbonylation of methanol in the presence of iodide promoter(ref. 5). Especially, a nickel on active carbon catalyst gave acetic acid and methyl acetate with the selectivity of 95% or higher at 100% methanol conversion under 10 atm and 250 °C. In the present study it has been found that a small amount of hydrogen which is always contained in the commercially available CO and requires much cost for being removed completely, accelerates greatly the carbonylation reaction. [Pg.245]

In past years, metals in dilute sulfuric acid were used to produce the nascent hydrogen reductant (42). Today, the reducing agent is hydrogen in the presence of a catalyst. Nickel, preferably Raney nickel (34), chromium or molybdenum promoted nickel (43), or supported precious metals such as platinum or palladium (35,44) on activated carbon, or the oxides of these metals (36,45), are used as catalysts. Other catalysts have been suggested such as molybdenum and platinum sulfide (46,47), or a platinum—nithenium mixture (48). [Pg.311]

Hydrogenation. Hydrogenation is one of the oldest and most widely used appHcations for supported catalysts, and much has been written in this field (55—57). Metals useflil in hydrogenation include cobalt, copper, nickel, palladium, platinum, rhenium, rhodium, mthenium, and silver, and there are numerous catalysts available for various specific appHcations. Most hydrogenation catalysts rely on extremely fine dispersions of the active metal on activated carbon, alumina, siHca-alumina, 2eoHtes, kieselguhr, or inert salts, such as barium sulfate. [Pg.199]

This reaction is favored by moderate temperatures (100—150°C), low pressures, and acidic solvents. High activity catalysts such as 5—10 wt % palladium on activated carbon or barium sulfate, high activity Raney nickel, or copper chromite (nonpromoted or promoted with barium) can be used. Palladium catalysts are recommended for the reduction of aromatic aldehydes, such as that of benzaldehyde to toluene. [Pg.200]

Palladium and platinum (5—10 wt % on activated carbon) can be used with a variety of solvents as can copper carbonate on siHca and 60 wt % nickel on kieselguhr. The same is tme of nonsupported catalysts copper chromite, rhenium (VII) sulfide, rhenium (VI) oxide, and any of the Raney catalysts, copper, iron, or nickel. [Pg.200]

Nickel. As a methanation catalyst, nickel is presently preeminent. It is relatively cheap, it is very active, and it is the most selective to methane of all the metals. Its main drawback is that it is easily poisoned by sulfur, a fault common to all the known active methanation catalysts. The nickel content of commercial nickel catalysts is 25-77 wt %. Nickel is dispersed on a high-surface-area, refractory support such as alumina or kieselguhr. Some supports inhibit the formation of carbon by Reaction 4. Chromia-supported nickel has been studied by Czechoslovakian and Russian investigators. [Pg.23]

Various carbon-based catalysts were tested in the investigated air gas-diffusion electrodes pure active carbon [6], active carbon promoted with silver [7] or with both silver and nickel. Catalysts prepared by pyrolysis of active carbon impregnated with a solution of the compound Co-tetramethoxyphenylporphyrine (CoTMPP) are also studied [8],... [Pg.143]

The feasibility of carbon-supported nickel-based catalysts as the alternative to the platinum catalyst is studied in this chapter. Carbon-supported nickel (Ni/C, 10 wt-metal% [12]), ruthenium (Ru/C, 10 wt-metal% [12]), and nickel-ruthenium composite (Ni-Ru/C, 10 wt-metal%, mixed molar ratio of Ni/Ru 0.25,1,4, 8, and 16 [12]) catalysts were prepared similarly by the impregnation method. Granular powders of the activated carbon without the base pretreatment were stirred with the NiCl2, RuC13, and NiCl2-RuCl3 aqueous solutions at room temperature for 24 h, respectively. Reduction and washing were carried out in the same way as done for the Pt/C catalyst. Finally, these nickel-based catalysts were evacuated at 70°C for 10 h. [Pg.452]

The behavior of 3 toward ether or amines on the one hand and toward phosphines, carbon monoxide, and COD on the other (Scheme 2), can be qualitatively explained on the basis of the HSAB concept4 (58). The decomposition of 3 by ethers or amines is then seen as the displacement of the halide anion as a weak hard base from its acid-base complex (3). On the other hand, CO, PR3, and olefins are soft bases and do not decompose (3) instead, complexation to the nickel atom occurs. The behavior of complexes 3 and 4 toward different kinds of electron donors explains in part why they are highly active as catalysts for the oligomerization of olefins in contrast to the dimeric ir-allylnickel halides (1) which show low catalytic activity. One of the functions of the Lewis acid is to remove charge from the nickel, thereby increasing the affinity of the nickel atom for soft donors such as CO, PR3, etc., and for substrate olefin molecules. A second possibility, an increase in reactivity of the nickel-carbon and nickel-hydrogen bonds toward complexed olefins, has as yet found no direct experimental support. [Pg.112]

Common catalyst compositions include oxides of chromium or molybdenum, or cobalt and nickel metals, supported on silica, alumina, titania, zirconia, or activated carbon. [Pg.265]

The phase-transfer catalysed reaction of nickel tetracarbonyl with sodium hydroxide under carbon monoxide produces the nickel carbonyl dianions, Ni,(CO) 2- and Ni6(CO)162, which convert allyl chloride into a mixture of but-3-enoic and but-2-enoic acids [18]. However, in view of the high toxicity of the volatile nickel tetracarbonyl, the use of the nickel cyanide as a precursor for the carbonyl complexes is preferred. Pretreatment of the cyanide with carbon monoxide under basic conditions is thought to produce the tricarbonylnickel cyanide anion [19], as the active metal catalyst. Reaction with allyl halides, in a manner analogous to that outlined for the preparation of the arylacetic acids, produces the butenoic acids (Table 8.7). [Pg.374]


See other pages where Nickel-activated carbon catalysts is mentioned: [Pg.177]    [Pg.177]    [Pg.358]    [Pg.166]    [Pg.246]    [Pg.264]    [Pg.336]    [Pg.5407]    [Pg.14]    [Pg.346]    [Pg.52]    [Pg.269]    [Pg.1035]    [Pg.168]    [Pg.360]    [Pg.74]    [Pg.54]    [Pg.362]    [Pg.442]    [Pg.452]    [Pg.453]    [Pg.454]    [Pg.549]    [Pg.575]    [Pg.349]    [Pg.110]    [Pg.159]   
See also in sourсe #XX -- [ Pg.211 , Pg.212 , Pg.213 ]




SEARCH



Active carbon catalysts

Carbon-nickel

Catalysts carbon

Nickel activity

Nickel carbonate

Nickel catalyst activities

Nickel-activated carbon

Nickel-activated carbon catalysts adsorbed

Nickel-activated carbon catalysts ether

Nickel-activated carbon catalysts preparation

Nickel-activated carbon catalysts products

© 2024 chempedia.info