Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonates ternary

Carbon-carbon ternary centers can also be assembled by nucleophilic addition. Manfred Braun of the Universitat Diisseldorf has devised (Angew. Chem. bit. Ed. 2004,43,514) the Lewis acidic Ti complex 8. Exposure of a racemic benzylic silyl ether such as 7 to allyltrimethylsilane in the presence of the catalyst 8 leads to the alkylated product 9. Racemic tertiary benzylic ethers are also converted to the alkylated quaternary centers in > 90% . [Pg.94]

Bargar, J.R. et al., Characterization of U(VI)-carbonate ternary complexes on hematite EXAFS and electrophoretic mobility measurements, Geochim. Cosmochim. Acta, 64, 2737, 2000. [Pg.232]

The Y-Ni-C system. The liquidus projection and 800°C isothermal section of the yttrium-nickel-carbon ternary have been determined by means of microprobe. X-ray diffraction and metallographic techniques (Stadelmaier and Kim 1984). 75 specimens were annealed for 300 h at 800 10°C to construct the 800°C isothermal section which is shown in fig. 23. [Pg.135]

Fis] Fischbeck, K., The Iron-Chromium-Carbon Ternary System (in German), Stahl Eisen, 44(25), 715-719 (1924) (Phase Diagram, Review, 11)... [Pg.75]

Rog] Rogl, P, Metal-Boron-Carbon Ternary Systems , Effenbeig, G. (Ed.), MSIT-ASM International, OH, USA, 1-480 (1998) (Crys. Structure, Phase Diagram, Thermodyn., Review, )... [Pg.467]

Carbon atoms are classified according to their degree of substitution by other car bons A primary carbon is directly attached to one other carbon Similarly a secondary carbon is directly attached to two other carbons a tertiary carbon to three and a qua ternary carbon to four Alkyl groups are designated as primary secondary or tertiary according to the degree of substitution of the carbon at the potential point of attachment... [Pg.74]

Thousands of compounds of the actinide elements have been prepared, and the properties of some of the important binary compounds are summarized in Table 8 (13,17,18,22). The binary compounds with carbon, boron, nitrogen, siUcon, and sulfur are not included these are of interest, however, because of their stabiUty at high temperatures. A large number of ternary compounds, including numerous oxyhaUdes, and more compHcated compounds have been synthesized and characterized. These include many intermediate (nonstoichiometric) oxides, and besides the nitrates, sulfates, peroxides, and carbonates, compounds such as phosphates, arsenates, cyanides, cyanates, thiocyanates, selenocyanates, sulfites, selenates, selenites, teUurates, tellurites, selenides, and teUurides. [Pg.221]

The earliest mention of an ammonium carbonate, salt of hartshorn, appears in English manuscripts of the 14th century. As the name implies, the material was obtained by dry distillation of animal waste such as horn, leather, and hooves. Although many salts have been described in the Hterature for the ternary NH —CO2—H2O system, most, except for ammonium bicarbonate [1066-33-7], NH HCO, ammonium carbonate [506-87-6], (NH 2 02, and ammonium carbamate [1111-78-0], NH4CO2NH2, are mixtures (5,6). [Pg.362]

The commercial production of silicon in the form of binary and ternary alloys began early in the twentieth century with the development of electric-arc and blast furnaces and the subsequent rise in iron (qv) and steel (qv) production (1). The most important and most widely used method for making silicon and silicon alloys is by the reduction of oxides or silicates using carbon (qv) in an electric arc furnace. Primary uses of silicon having a purity of greater than 98% ate in the chemical, aluminum, and electronics markets (for higher purity silicon, see Silicon AND SILICON ALLOYS, PURE SILICON). [Pg.535]

Cellulose Solvent. Although DMSO by itself does not dissolve cellulose, the following binary and ternary systems are cellulose solvents DMSO—methylamine, DMSO—sulfur trioxide, DMSO—carbon disulfide—amine, DMSO— ammonia—sodamide, DMSO—dinitrogen tetroxide,... [Pg.112]

Phase Behavior. One of the pioneering works detailing the phase behavior of ternary systems of carbon dioxide was presented ia the early 1950s (12) and consists of a compendium of the solubiHties of over 260 compounds ia Hquid (21—26°C) carbon dioxide. This work contains 268 phase diagrams for ternary systems. Although the data reported are for Hquid CO2 at its vapor pressure, they yield a first approximation to solubiHties that may be encountered ia the supercritical region. Various additional sources of data are also available (1,4,7,13). [Pg.221]

Iron carbide (3 1), Fe C mol wt 179.56 carbon 6.69 wt % density 7.64 g/cm mp 1650°C is obtained from high carbon iron melts as a dark gray air-sensitive powder by anodic isolation with hydrochloric acid. In the microstmcture of steels, cementite appears in the form of etch-resistant grain borders, needles, or lamellae. Fe C powder cannot be sintered with binder metals to produce cemented carbides because Fe C reacts with the binder phase. The hard components in alloy steels, such as chromium steels, are double carbides of the formulas (Cr,Fe)23Cg, (Fe,Cr)2C3, or (Fe,Cr)3C2, that derive from the binary chromium carbides, and can also contain tungsten or molybdenum. These double carbides are related to Tj-carbides, ternary compounds of the general formula M M C where M = iron metal M = refractory transition metal. [Pg.453]

Complex Carbides. Complex carbides are ternary or quaternary intermetaUic phases containing carbon and two or more metals. One metal can be a refractory transition metal the second may be a metal from the iron or A-groups. Nonmetals can also be incorporated. [Pg.455]

Carbon tetrachloride readily dissolves stannic chloride, SnCl, but not ferric chloride, FeCl. Carbon tetrachloride forms a large number of binary and several ternary azeotropic mixtures a partial Hst of the former is shown in Table 3. [Pg.530]

Katz et al. tested the theory further and measured the distribution coefficient of n-pentanol between mixtures of carbon tetrachloride and toluene and pure water and mixtures of n-heptane and n-chloroheptane and pure water. The results they obtained are shown in Figure 17. The linear relationship between the distribution coefficient and the volume fraction of the respective solvent was again confirmed. It is seen that the distribution coefficient of -pentanol between water and pure carbon tetrachloride is about 2.2 and that an equivalent value for the distribution coefficient of n-pentanol was obtained between water and a mixture containing 82%v/v chloroheptane and 18%v/v of n-heptane. The experiment with toluene was repeated using a mixture of 82 %v/v chloroheptane and 18% n-heptane mixture in place of carbon tetrachloride which was, in fact, a ternary mixture comprising of toluene, chloroheptane and n-heptane. The chloroheptane and n-heptane was always in the ratio of 82/18 by volume to simulate the interactive character of carbon tetrachloride. [Pg.110]

The steel will be considered to be an ideal ternary solution, and therefore at all temperatures a, = 0-18, Ani = 0-08 and flpc = 0-74. Owing to the Y-phase stabilisation of iron by the nickel addition it will be assumed that the steel, at equilibrium, is austenitic at all temperatures, and the thermodynamics of dilute solutions of carbon in y iron only are considered. [Pg.1108]

Carbon tetrachloride-hydrogen sulfide-water ternary system, 49, 51, 52 Carboniuin ion polymerization, 158 Carboxylic groups initiator, 174 Catalyst clathrates equilibrium, 35 Cell partition function, in calculation of thermodynamic quantities of clathrates, 26... [Pg.404]

Whereas the electrochemical decomposition of propylene carbonate (PC) on graphite electrodes at potentials between 1 and 0.8 V vs. Li/Li was already reported in 1970 [140], it took about four years to find out that this reaction is accompanied by a partially reversible electrochemical intercalation of solvated lithium ions, Li (solv)y, into the graphite host [64], In general, the intercalation of Li (and other alkali-metal) ions from electrolytes with organic donor solvents into fairly crystalline graphitic carbons quite often yields solvated (ternary) lithiated graphites, Li r(solv)yC 1 (Fig. 8) [7,24,26,65,66,141-146],... [Pg.394]

Carbon isotherms for a pressure of 30 psia are superimposed on the ternary (Figure 3). Interpretation of the isotherms reveals that mixtures of the elements which fall above the curves are in the carbon-forming region when at chemical equilibrium. Mixtures of the elements which... [Pg.151]

The mathematical properties of the set of equations describing chemical equilibrium in the synthesis gas system indicate that the carbon-producing regions are defined solely by pressure, temperature, and elemental analysis. Once a safe blend of reactants is determined from the ternary, the same set of equations which was used to derive the ternary may be used to determine the gas composition. [Pg.153]

Metal-induced reductive dimerization of carbonyl compounds is a useful synthetic method for the formation of vicinally functionalized carbon-carbon bonds. For stoichiometric reductive dimerizations, low-valent metals such as aluminum amalgam, titanium, vanadium, zinc, and samarium have been employed. Alternatively, ternary systems consisting of catalytic amounts of a metal salt or metal complex, a chlorosilane, and a stoichiometric co-reductant provide a catalytic method for the formation of pinacols based on reversible redox couples.2 The homocoupling of aldehydes is effected by vanadium or titanium catalysts in the presence of Me3SiCl and Zn or A1 to give the 1,2-diol derivatives high selectivity for the /-isomer is observed in the case of secondary aliphatic or aromatic aldehydes. [Pg.15]

A variety of such ternary catalytic systems has been developed for diastereoselective carbon-carbon bond formations (Table). A Cp-substituted vanadium catalyst is superior to the unsubstituted one,3 whereas a reduced species generated from VOCl3 and a co-reductant is an excellent catalyst for the reductive coupling of aromatic aldehydes.4 A trinuclear complex derived from Cp2TiCl2 and MgBr2 is similarly effective for /-selective pinacol coupling.5 The observed /-selectivity may be explained by minimization of steric effects through anti-orientation of the bulky substituents in the intermediate. [Pg.15]


See other pages where Carbonates ternary is mentioned: [Pg.255]    [Pg.340]    [Pg.75]    [Pg.80]    [Pg.255]    [Pg.340]    [Pg.75]    [Pg.80]    [Pg.143]    [Pg.285]    [Pg.164]    [Pg.282]    [Pg.38]    [Pg.72]    [Pg.514]    [Pg.524]    [Pg.194]    [Pg.376]    [Pg.94]    [Pg.372]    [Pg.345]    [Pg.293]    [Pg.298]    [Pg.1046]    [Pg.389]    [Pg.353]    [Pg.395]    [Pg.395]    [Pg.151]    [Pg.153]    [Pg.204]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Ternary mixed-salt solutions carbon dioxide solubility

© 2024 chempedia.info