Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide distribution

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Electronic excitation from atom-transfer reactions appears to be relatively uncommon, with most such reactions producing chemiluminescence from vibrationaHy excited ground states (188—191). Examples include reactions of oxygen atoms with carbon disulfide (190), acetylene (191), or methylene (190), all of which produce emission from vibrationaHy excited carbon monoxide. When such reactions are carried out at very low pressure (13 mPa (lO " torr)), energy transfer is diminished, as with molecular beam experiments, so that the distribution of vibrational and rotational energies in the products can be discerned (189). Laser emission at 5 p.m has been obtained from the reaction of methylene and oxygen initiated by flash photolysis of a mixture of SO2, 2 2 6 (1 )-... [Pg.271]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

DiisononylPhthalate andDiisodeeylPhthalate. These primary plasticizers are produced by esterification of 0x0 alcohols of carbon chain length nine and ten. The 0x0 alcohols are produced through the carbonylation of alkenes (olefins). The carbonylation process (eq. 3) adds a carbon unit to an alkene chain by reaction with carbon monoxide and hydrogen with heat, pressure, and catalyst. In this way a Cg alkene is carbonylated to yield a alcohol a alkene is carbonylated to produce a C q alcohol. Due to the distribution of the C=C double bond ia the alkene and the varyiag effectiveness of certain catalysts, the position of the added carbon atom can vary and an isomer distribution is generally created ia such a reaction the nature of this distribution depends on the reaction conditions. Consequendy these alcohols are termed iso-alcohols and the subsequent phthalates iso-phthalates, an unfortunate designation ia view of possible confusion with esters of isophthaUc acid. [Pg.122]

Fig. 32-2. Distribution of carbon monoxide from an automohve source. Fig. 32-2. Distribution of carbon monoxide from an automohve source.
The modern natural-gas industry has its origins in the nineteenth centuiy as urban gas works that distributed synthesis gas (a mixture of carbon monoxide, hydrogen and carbon dioxide made by the incomplete combustion of coal, oil, or organic wastes in the presence of steam). Gas works illuminated London streets even before 1800, and subsequently... [Pg.820]

The FTS mechanism could be considered a simple polymerization reaction, the monomer being a Ci species derived from carbon monoxide. This polymerization follows an Anderson-Schulz-Flory distribution of molecular weights. This distribution gives a linear plot of the logarithm of yield of product (in moles) versus carbon number. Under the assumptions of this model, the entire product distribution is determined by one parameter, a, the probability of the addition of a carbon atom to a chain (Figure 4-7). ... [Pg.126]

Figure 2.14. The molecular orbitals of gas phase carbon monoxide, (a) Energy diagram indicating how the molecular orbitals arise from the combination of atomic orbitals of carbon (C) and oxygen (O). Conventional arrows are used to indicate the spin orientations of electrons in the occupied orbitals. Asterisks denote antibonding molecular orbitals, (b) Spatial distributions of key orbitals involved in the chemisorption of carbon monoxide. Barring indicates empty orbitals.5 (c) Electronic configurations of CO and NO in vacuum as compared to the density of states of a Pt(lll) cluster.11 Reprinted from ref. 11 with permission from Elsevier Science. Figure 2.14. The molecular orbitals of gas phase carbon monoxide, (a) Energy diagram indicating how the molecular orbitals arise from the combination of atomic orbitals of carbon (C) and oxygen (O). Conventional arrows are used to indicate the spin orientations of electrons in the occupied orbitals. Asterisks denote antibonding molecular orbitals, (b) Spatial distributions of key orbitals involved in the chemisorption of carbon monoxide. Barring indicates empty orbitals.5 (c) Electronic configurations of CO and NO in vacuum as compared to the density of states of a Pt(lll) cluster.11 Reprinted from ref. 11 with permission from Elsevier Science.
Carbon monoxide (CO) Is one of the most widely distributed air pollutants. It Is formed by natural biological and oxidation processes, the Incomplete combustion of carbon-containing fuels and various Industrial processes. However, the largest Individual source of man-made emissions Is motor vehicle exhausts which account for virtually all CO emitted In some urban environments. It has been estimated that global man-made emissions range from 300-1600 million tons per year, which Is approximately 60% of the total global CO emissions (22-23). [Pg.176]

The authors developed a multi-layered microreactor system with a methanol reforma- to supply hydrogen for a small proton exchange membrane fiiel cell (PEMFC) to be used as a power source for portable electronic devices [6]. The microreactor consists of four units (a methanol reformer with catalytic combustor, a carbon monoxide remover, and two vaporizers), and was designed using thermal simulations to establish the rppropriate temperature distribution for each reaction, as shown in Fig. 3. [Pg.67]

The Pd-Sn/C catalysts (1 to 7.5% Pd containing 0 to 1% Sn) were heated under vacuum at 150°C and then exposed to hydrogen. These preactivated samples were then titrated with carbon monoxide, a veiy specific ligand for Pd, up to 800 Torr at 30°C. A general linear trend of carbon monoxide concentration with % Pd in Figure 15.3 indicates that the carbon monoxide adsorption is directly correlated to Pd concentration, as expected. The trend is independent of Sn content. This linear Pd-CO trend indicates that the particle size distribution is similar for the different catalysts. However, Figure 15.3 also indicates no relationship between % H2S irreversibly adsorbed and % Pd. [Pg.141]

The general advantage of using carbon tetrachloride or phosgene is that these compounds decompose at the reaction temperature to provide a uniform distribution of active carbon or carbon monoxide and chlorine at the reaction sites over the oxide surface. These reagents are, however, not as convenient to use as a carbon and chlorine mixture in large-scale operations. Besides, phosgene is poisonous. [Pg.403]

Cardiogenic/distributive/obstructive/hypovolemic shock, carbon monoxide poisoning, severe hypoxemia, severe anemia, and seizures... [Pg.177]

Fig. 7.2 indicates the electron distribution of HO of carbon monoxide which largely localizes at the carbon atom 79>. This orbital resembles a lone-pair AO on the carbon atom and leads to the expectation that the carbon atom would behave as the electron-donating centre. As a matter of fact, the CO molecule coordinates with a metal cation by M—C—O type linkage (M represents a metal cation) in various metal carbonyl compounds. It is of interest to remark that the total electron population of the CO molecule has been shown by recent reliable calculation 80> to be rich on the oxygen atom in place of the carbon atom. [Pg.45]

Lauwerys R, Buchet J-P, Roels HA, et al. 1978. Placental transfer of lead, mercury, cadmium, and carbon monoxide in women I. Comparison of the frequency distributions of the biological indices in maternal and umbilical cord blood. Environ Res 15 278-289. [Pg.543]

Before analyzing the results of these, or similar, thermochemical cycles, the assumptions which have been made must be critically examined. Since the cycles are tested for different surface coverages, it is assumed first that the Q-0 curves represent correctly, in all cases, the distribution of reactive sites—the energy spectrum—on the surface of the adsorbent. This point has been discussed in the preceding section (Section VII.A). It is assumed moreover that, for instance, the first doses of carbon monoxide (8 = 0) interact with oxygen species adsorbed on the most reactive surface sites (0 = 0). This assumption, which is certainly not acceptable in all cases, ought to be verified directly. This may be achieved in separate experiments by adsorbing limited amounts of the different reactants in the same se-... [Pg.248]

Effect of Carbon Monoxide Partial Pressure on Isomeric Distribution of the Hydroformylation Products of Olefins (30)a... [Pg.11]

The Fischer-Tropsch synthesis, which may be broadly defined as the reductive polymerization of carbon monoxide, can be schematically represented as shown in Eq. (1). The CHO products in Eq. (1) are any organic molecules containing carbon, hydrogen, and oxygen which are stable under the reaction conditions employed in the synthesis. With most heterogeneous catalysts the primary products of the reaction are straight-chain alkanes, while the secondary products include branched-chain hydrocarbons, alkenes, alcohols, aldehydes, and carboxylic acids. The distribution of the various products depends on both the type of catalyst and the reaction conditions employed (4). [Pg.62]


See other pages where Carbon monoxide distribution is mentioned: [Pg.75]    [Pg.75]    [Pg.74]    [Pg.342]    [Pg.2244]    [Pg.470]    [Pg.37]    [Pg.233]    [Pg.821]    [Pg.133]    [Pg.116]    [Pg.101]    [Pg.115]    [Pg.86]    [Pg.686]    [Pg.152]    [Pg.168]    [Pg.196]    [Pg.20]    [Pg.184]    [Pg.231]    [Pg.6]    [Pg.355]    [Pg.189]    [Pg.254]    [Pg.141]    [Pg.282]    [Pg.470]    [Pg.74]    [Pg.216]    [Pg.491]    [Pg.247]    [Pg.288]   
See also in sourсe #XX -- [ Pg.272 ]




SEARCH



Fischer-Tropsch synthesis carbon monoxide-hydrogen distribution

© 2024 chempedia.info