Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide carboxylic acids

Carbon Compounds Carbon Compounds Carbon Monoxide Carboxylic Acids Acetic Acid... [Pg.4]

Neo acids are prepared from selected olefins using carbon monoxide and acid catalyst (4) (see Carboxylic Acids, trialkylacetic acids). 2-EthyIhexanoic acid is manufactured by an aldol condensation of butyraldehyde followed by an oxidation of the resulting aldehyde (5). Isopalmitic acid [4669-02-7] is probably made by an aldol reaction of octanal. [Pg.100]

Complexes of carbonic or carboxylic acid anions have been used as hydroformylation catalysts for various alkenes. The bicarbonate complex [Rh(H)2(02COH)(PPr 3)2] as catalyst enabled 1-hexene to be converted to aldehydes using paraformaldehyde as source of hydrogen and carbon monoxide in place of the more usual gas mixture.338 The acetate complex [Rh(OAc)CO(PPh3)2] (74) has been shown to effect the selective hydroformylation of cyclic dienes. The cyclohexadienes gave predominantly dialdehydes, whereas 1,3- and 1,5-cyclooctadiene gave the saturated monoaldehydes.339... [Pg.262]

The palladium catalyzed coupling of imine, carbon monoxide and acid chloride is reported as a new route to prepare peptide-based imidazoline-carboxylates. Mechanistic studies suggest this process proceeds via the palladium catalyzed generation of l,3-oxazolium-5-oxide intermediates, which react with imine to generate the observed products. [Pg.502]

The reaction of trivalent carbocations with carbon monoxide giving acyl cations is the key step in the well-known and industrially used Koch-Haaf reaction of preparing branched carboxylic acids from al-kenes or alcohols. For example, in this way, isobutylene or tert-hutyi alcohol is converted into pivalic acid. In contrast, based on the superacidic activation of electrophiles leading the superelectrophiles (see Chapter 12), we found it possible to formylate isoalkanes to aldehydes, which subsequently rearrange to their corresponding branched ketones. [Pg.165]

Although these humble origins make interesting historical notes m most cases the large scale preparation of carboxylic acids relies on chemical synthesis Virtually none of the 3 X 10 lb of acetic acid produced m the United States each year is obtained from vinegar Instead most industrial acetic acid comes from the reaction of methanol with carbon monoxide... [Pg.806]

Olefins are carbonylated in concentrated sulfuric acid at moderate temperatures (0—40°C) and low pressures with formic acid, which serves as the source of carbon monoxide (Koch-Haaf reaction) (187). Liquid hydrogen fluoride, preferably in the presence of boron trifluoride, is an equally good catalyst and solvent system (see Carboxylic acids). [Pg.563]

Carbocations generated from alkanes using superacids react with carbon monoxide under mild conditions to form carboxyUc acid (188). In this process isomeric carboxyUc acids are produced as a mixture. However, when the reaction is mn with catalytic amounts of bromine (0.3 mmol eq) in HF-SbF solution, regio-selective carboxylation is obtained. / -Propane was converted almost exclusively to isobutyric acid under these conditions. [Pg.563]

Highly Branched Acids. These acids, called neoacids, are produced from highly branched olefins, carbon monoxide, and an acid catalyst such as sulfuric acid, hydrogen fluoride, or boron trifluoride. 2,2,2-Trimethylacetic acid (pivaUc acid) is made from isobutylene and neodecanoic acid is produced from propylene trimer (see Carboxylic Acids, trialkylacetic acids). [Pg.92]

Carbonylation, or the Koch reaction, can be represented by the same equation as for hydrocarboxylation. The catalyst is H2SO4. A mixture of C-19 dicarboxyhc acids results due to extensive isomerization of the double bond. Methyl-branched isomers are formed by rearrangement of the intermediate carbonium ions. Reaction of oleic acid with carbon monoxide at 4.6 MPa (45 atm) using 97% sulfuric acid gives an 83% yield of the C-19 dicarboxyhc acid (82). Further optimization of the reaction has been reported along with physical data of the various C-19 dibasic acids produced. The mixture of C-19 acids was found to contain approximately 25% secondary carboxyl and 75% tertiary carboxyl groups. As expected, the tertiary carboxyl was found to be very difficult to esterify (80,83). [Pg.63]

The dimer acids [61788-89-4] 9- and 10-carboxystearic acids, and C-21 dicarboxylic acids are products resulting from three different reactions of C-18 unsaturated fatty acids. These reactions are, respectively, self-condensation, reaction with carbon monoxide followed by oxidation of the resulting 9- or 10-formylstearic acid (or, alternatively, by hydrocarboxylation of the unsaturated fatty acid), and Diels-Alder reaction with acryUc acid. The starting materials for these reactions have been almost exclusively tall oil fatty acids or, to a lesser degree, oleic acid, although other unsaturated fatty acid feedstocks can be used (see Carboxylic acids. Fatty acids from tall oil Tall oil). [Pg.113]

Carbon, hydrogen and possibly oxygen Resin and derivatives Natural drying oils Cellulose derivatives Alkyd resins Epoxy resins (uncured) Phenol-formaldehyde resins Polystyrene Acrylic resins Natural and synthetic rubbers Carbon monoxide Aldehydes (particularly formaldehyde, acrolein and unsaturated aldehydes) Carboxylic acids Phenols Unsaturated hydrocarbons Monomers, e.g. from polystyrene and acrylic resins... [Pg.138]

Sodium pyrazolate and 3,5-dimethylpyrazolate, [( " -cod)Rh(/A-Cl)]2, carbon monoxide, 3-(diphenylphosphino)benzoic acid, or (2-formylphenyl)diphenyl-phosphine give rise to complexes 120 (R = H, Me) and 121 (R = H, Me) [94JOM(469)213]. However, 2-(diphenylphosphino)benzoic acid (the carboxyl group in the ortho position) leads to formation of the mononuclear complexes 122. The products appear to be catalysts for hydroformylation reactions [93MI2]. [Pg.187]

In the presence of strong acid, formic acid decomposes to water and carbon monoxide. In the process, reactive intermediates form which are capable of direct carboxylation of carbonium ions. Since many carbonium ions are readily generated by the reaction of alcohols with strong acid, the process of elimination and carboxylation can be conveniently carried out in a single flask. The carbonium ions generated are subject to the... [Pg.134]

According to the above reaction scheme the carbonylation reaction has to be carried out in two steps In the absence of water the olefin is first converted at 20-80°C and 20-100 bar by the aid of mineralic acid and carbon monoxide into an acyliumion. In a second step the acyliumion reacts with water to the carboxylic acid. The mineral acid catalyst is recovered and can be recycled. The formation of tertiary carboxylic acids (carboxylic acids of the pivalic acid type) is enhanced by rising temperature and decreasing CO pressure in the first step of the reaction. Only tertiary carboxylic acids are formed from olefins that have at the same C atom a branching and a double bond (isobutylene-type olefins). [Pg.30]

The reaction between carbonium ions and carbon monoxide affording oxocarbonium ions (acyl cations) is a key step in the well-known Koch reaction for making carboxylic acids from alkenes, carbon monoxide and water ... [Pg.29]

Several methods, all based on carbon monoxide or metal carbonyls, have been developed for converting an alkyl halide to a carboxylic acid or an acid derivative... [Pg.564]

Sodium or potassium phenoxide can be carboxylated regioselectively in the para position in high yield by treatment with sodium or potassium carbonate and carbon monoxide. Carbon-14 labeling showed that it is the carbonate carbon that appears in the p-hydroxybenzoic acid product. The CO is converted to sodium or potassium formate. Carbon monoxide has also been used to carboxylate aromatic rings with palladium compoimds as catalysts. In addition, a palladium-catalyzed reaction has been used directly to prepare acyl fluorides ArH —> ArCOF. ... [Pg.718]

Carboxylic acids can be prepared in moderate-to-high yields by treatment of diazonium fluoroborates with carbon monoxide and palladium acetate or copper(II) chloride. The mixed anhydride ArCOOCOMe is an intermediate that can be isolated. Other mixed anhydrides can be prepared by the use of other salts instead of sodium acetate." An arylpalladium compound is probably an intermediate." ... [Pg.938]


See other pages where Carbon monoxide carboxylic acids is mentioned: [Pg.1070]    [Pg.301]    [Pg.1070]    [Pg.301]    [Pg.504]    [Pg.1077]    [Pg.132]    [Pg.19]    [Pg.81]    [Pg.293]    [Pg.316]    [Pg.504]    [Pg.477]    [Pg.381]    [Pg.436]    [Pg.945]    [Pg.51]    [Pg.149]    [Pg.29]    [Pg.1029]    [Pg.1424]    [Pg.276]    [Pg.197]    [Pg.183]    [Pg.189]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Carbon carboxylic acids

Carbon, acids monoxide

Carboxyl carbon

Carboxylic acids carbonation

Carboxylic carbon

© 2024 chempedia.info