Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylation of aromatic rings

Carboxylation of aromatic rings with carbonyl halides... [Pg.1661]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

G. Prakash, G. K. S. Efficient Chemoselective Carboxylation of Aromatics to Arylcarboxylic Acids with Superelectrophilically Activated Carbon Dioxide-Al2CI6/Al System. J. Am. Chem. Soc. 2002, 124, 11379-11391. (d) Klumpp, D. A. Rendy, R. McElrea, A. Superacid Catalyzed Ring-opening Reactions Involving 2-Oxazolines and the Role of Superelectrophilic Intermediates. Tetrahedron Lett. 2004, 45, 7959-7961. [Pg.171]

Maeda, N., Ohya, T., Nojima. K.. and Kanno. S. Formation of cyanide ion or cyanogen chloride through the cleavage of aromatic rings by nitrous acid or chlorine. IX. On the reactions of chlorinated, nitrated, carboxylated or methylated benzene derivatives with hypochlorous acid in the presence of aimnonium ion, Chemosphere, 16(10-12) 2249-2258, 1987. [Pg.1691]

Permeability of aromatic polyamide membranes have been improved by modification of aromatic rings with pendant polar groups, for examples sulfonic, carboxylic, carboxamide, and sulfonamide groups, in addition to the before-mentioned methoxy group. [Pg.83]

Arene(tricarbonyl)chromium complexes, 19 Nickel boride, 197 to trans-alkenes Chromium(II) sulfate, 84 of anhydrides to lactones Tetrachlorotris[bis(l,4-diphenyl-phosphine)butane]diruthenium, 288 of aromatic rings Palladium catalysts, 230 Raney nickel, 265 Sodium borohydride-1,3-Dicyano-benzene, 279 of aryl halides to arenes Palladium on carbon, 230 of benzyl ethers to alcohols Palladium catalysts, 230 of carboxylic acids to aldehydes Vilsmeier reagent, 341 of epoxides to alcohols Samarium(II) iodide, 270 Sodium hydride-Sodium /-amyloxide-Nickel(II) chloride, 281 Sodium hydride-Sodium /-amyloxide-Zinc chloride, 281 of esters to alcohols Sodium borohydride, 278 of imines and related compounds Arene(tricarbonyl)chromium complexes, 19... [Pg.372]

Degradative oxidation of aromatic rings into carboxylic acids4b and oxidation of aromatic compounds to quinones2a... [Pg.226]

Several catalytic hydrogenations of aromatic rings in compounds containing free carboxyl groups are described (cf. method 4). Low-pressure hydrogenation over platinum oxide catalyst has been used. p-Toluic acid in acetic acid at 60° gives 4-methylcyclohexanecarboxylic acid (S>5%). [Pg.668]

Aromatic carboxylic acids can be prepared by oxidation of the corresponding benzyl alcohols and benzaldehydes. An aromatic methyl group is also sufficiently activated by the aromatic ring for it to be oxidized to the acid under vigorous conditions, such as heating with chromium(VI) oxide. Other conventional methods include the hydrolysis of aromatic nitriles and the carboxylation of aromatic Grignard reagents with carbon dioxide. [Pg.131]

The most important applications of peroxyacetic acid are the epoxi-dation [250, 251, 252, 254, 257, 258] and anti hydroxylation of double bonds [241, 252, the Dakin reaction of aldehydes [259, the Baeyer-Villiger reaction of ketones [148, 254, 258, 260, 261, 262] the oxidation of primary amines to nitroso [iJi] or nitrocompounds [253], of tertiary amines to amine oxides [i58, 263], of sulfides to sulfoxides and sulfones [264, 265], and of iodo compounds to iodoso or iodoxy compounds [266, 267] the degradation of alkynes [268] and diketones [269, 270, 271] to carboxylic acids and the oxidative opening of aromatic rings to aromatic dicarboxylic acids [256, 272, 271, 272,273, 274]. Occasionally, peroxyacetic acid is used for the dehydrogenation [275] and oxidation of aromatic compounds to quinones [249], of alcohols to ketones [276], of aldehyde acetals to carboxylic acids [277], and of lactams to imides [225,255]. The last two reactions are carried out in the presence of manganese salts. The oxidation of alcohols to ketones is catalyzed by chromium trioxide, and the role of peroxyacetic acid is to reoxidize the trivalent chromium [276]. [Pg.12]

Sodium hypochlorite is used for the epoxidation of double bonds [659, 691] for the oxidation of primary alcohols to aldehydes [692], of secondary alcohols to ketones [693], and of primary amines to carbonyl compounds [692] for the conversion of benzylic halides into acids or ketones [690] for the oxidation of aromatic rings to quinones [694] and of sulfides to sulfones [695] and, especially, for the degradation of methyl ketones to carboxylic acids with one less carbon atom [655, 696, 697, 695, 699] and of a-amino acids to aldehydes with one less carbon [700]. Sodium hypochlorite is also used for the reoxidation of low-valence ruthenium compounds to ruthenium tetroxide in oxidations by ruthenium trichloride [701]. [Pg.27]


See other pages where Carboxylation of aromatic rings is mentioned: [Pg.717]    [Pg.1281]    [Pg.728]    [Pg.717]    [Pg.1281]    [Pg.728]    [Pg.151]    [Pg.449]    [Pg.383]    [Pg.318]    [Pg.287]    [Pg.186]    [Pg.371]    [Pg.126]    [Pg.27]    [Pg.194]    [Pg.264]    [Pg.4]    [Pg.334]    [Pg.68]    [Pg.298]    [Pg.174]    [Pg.371]    [Pg.6]    [Pg.19]    [Pg.46]   
See also in sourсe #XX -- [ Pg.718 ]




SEARCH



Aromatic carboxylate

Aromatics carboxylation

Carboxylation of the aromatic ring system

Carboxylic aromatic

Of aromatic rings

© 2024 chempedia.info