Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon-1 3 from ethylene-1-olefin

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

A.luminum Jilkyl Chain Growth. Ethyl, Chevron, and Mitsubishi Chemical manufacture higher, linear alpha olefins from ethylene via chain growth on triethyl aluminum (15). The linear products are then used as oxo feedstock for both plasticizer and detergent range alcohols and because the feedstocks are linear, the linearity of the alcohol product, which has an entirely odd number of carbons, is a function of the oxo process employed. Alcohols are manufactured from this type of olefin by Sterling, Exxon, ICI, BASE, Oxochemie, and Mitsubishi Chemical. [Pg.459]

Linear a-olefins were produced by wax cracking from about 1962 to about 1985, and were first commercially produced from ethylene in 1965. More recent developments have been the recovery of pentene and hexene from gasoline fractions (1994) and a revival of an older technology, the production of higher carbon-number olefins from fatty alcohols. [Pg.437]

Carbon tetrachloride forms telomers with ethylene and certain other olefins (14—16). The mixture of Hquid products derived from ethylene telomerization may be represented CCl2(CH2CH2) Cl ia which nis 2l small number. Reaction of ethylene and carbon tetrachloride takes place under pressure and is induced by the presence of a peroxygen compound, eg, ben2oyl peroxide (17—19) or metal carbonyls (14,15). [Pg.531]

Unsaturated Hydrocarbons. Olefins from ethylene through octene have been converted into esters via acid-catalyzed nucleophilic addition. With ethylene and propjiene, only a single ester is produced using acetic acid, ethyl acetate and isopropyl acetate, respectively. With the butylenes, two products are possible j -butyl esters result from 1- and 2-butylenes, whereas tert-huty esters are obtained from isobutjiene. The C5 olefins give rise to three j iC-amyl esters and one /-amyl ester. As the carbon chain is lengthened, the reactivity of the olefin with organic acids increases. [Pg.381]

LAB is derived exclusively from petroleum- or natural gas-based feedstocks. Thus, it is referred to as a petrochemical (or synthetic) surfactant intermediate. Feedstocks for LAB production are generally paraffins (carbon chain length in the range of C8-C14) derived from kerosene and benzene. Internal olefins derived from ethylene are sometimes used in place of paraffins. [Pg.648]

Aliphatic polyketones are made from the reaction of olefin monomers and carbon monoxide using a variety of catalysts. Shell commercialized a terpolymer of carbon monoxide, ethylene, and a small amount of propylene in 1996 under the trade name Carilon (structure 4.79). They have a useful range between the Tg (15°C) and (200°C) that corresponds to the general useful range of temperatures for most industrial applications. The presence of polar groups causes the materials to be tough, with the starting materials readily available. [Pg.119]

The contrast between the behavior of recoil atoms and those produced in the carbon arc may reflect the larger kinetic energy of the former. However, even in solid xenon at low temperatures the recoil atoms yield no spiropentane from ethylene.17 It has been suggested that the initial carbon atom-olefin adducts may partition themselves differently for different olefins.17... [Pg.27]

The most recent attack on this problem is that by Jaffe,447 who concludes basically that ethylene oxide resembles the nr-oomplexM formulated by Dewar for the interaction of olefins with metal cations, bromonium ions, and even protons. This approach assume ethylenic carbon atoms at the outset, and proceeds to estimate the extent of departure from ethylenic character when the atomic orbital of oxygen is allowed to interact with the w-orbital linking the two carbons. Prom this point of view ethylene oxide could be depicted as (II). [Pg.342]

Linear internal monoolefins can be oxidized to linear secondary alcohols. The alpha (terminal) olefins from ethylene oligomerization, described earlier in this chapter, can be converted by oxo chemistry to alcohols having one more carbon atom. The higher alcohols from each of these sources are used for preparation of biodegradable, synthetic detergents. The alcohols provide the hydrophobic hydrocarbon group and are linked to a polar, hydrophilic group by ethoxylation, sulfation, phosphorylation, and so forth. [Pg.391]

Application To produce propylene and ethylene from low-value, light hydrocarbon streams from ethylene plants and refineries with feeds in the carbon number range of C4 to C8, such as steam cracker C4/C5 olefins, cat-cracker naphthas, or coker gasolines. [Pg.178]

Isomeric (s-cis- and (i-fra/w-V-conjugated diene)zirconocene and -haf-nocene complexes exhibit pronounced differences in their characteristic structural data as well as their spectroscopic features. These differences exceed by far the consequences expected to arise simply from the presence of conformational isomers of the 1,3-diene unit. While (f-rra/u-butadiene)-zirconocene (3a) shows a behavior similar to a transition metal olefin TT-complex, the (.r-cu-diene)ZrCp2 isomer 5a exhibits a pronounced alkylmetal character (23, 45). Typical features are best represented by a tr, 7T-type structure for 5 (55). However, the distinctly different bonding situation of the butadiene Tr-system/bent-metallocene linkage is not only reflected in differences in physical data between the dienemetallocene isomers 3 and 5, but also gives rise to markedly different chemical behavior. Three examples of this are discussed in this section the reactions of the 3/5 isomeric mbcture with carbon monoxide, ethylene, and organic carbonyl compounds. [Pg.26]

Data for 2-chloro-3-butanol is unavailable, but the low glycol yield for Tl(III) oxidation is understandable on the basis of steric hindrance to Sn2 attack of water on the carbon-thallium bond. With ethylene and propylene, the thallium (III) is attached to a primary carbon while with 2-butene it is attached to a secondary carbon. The situation with 2-butene is somewhat different from that found with the other olefins. In the oxythallation adduct from this olefin. [Pg.139]

Strictly related to catalytic reactions involving CO and H20 are reactions in which CO and alcohols, ROH, or CO and amines, R2NH, are used as building blocks. The catalytic addition of carbon monoxide and an alcohol to an olefin yields carboxylic esters (hydroesterification). Thus, the synthesis of methyl propionate from ethylene, CO, and methanol using a catalytic system composed of Ru3(CO)u and [PPh4]I (190°C, 20 bar C2H4, 45 bar CO, 2.5 hr, yield 74%, CT 1000) has been reported (323) ... [Pg.105]

Olefin metathesis is a useful reaction for the production of propylene from ethylene and butenes using certain transition-metal compound catalysts. The two main equilibrium reactions that take place simultaneously are metathesis and isomerization. Metathesis transforms the carbon-carbon double bond, a functional group that is unreactive toward many reagents that react with many other functional groups. New carbon-carbon double bonds are formed at or near room temperature even in aqueous media from starting materials. Because olefin metathesis is a reversible reaction, propylene can be produced from ethylene and butene-2. Metathesis can be added to steam crackers to enhance the production of propylene by the transformation of ethylene and the cracking of mixed butenes. Fig. 3 shows a schematic flow diagram of a typical metathesis process. Examples of metathesis... [Pg.2464]

Addition of aliphatic hydrocarbons to ethylenic compounds occurs under the influence of catalysts such as sulfuric acid, phosphoric acid, and aluminum chloride.1 For instance, isobutane and propene afford the three isomeric heptanes. This reaction is not of particular importance in laboratory practice. However, addition of aromatic compounds to olefins is often a practicable method of alkylation.2 Thus ethylbenzene is formed from ethylene and benzene under the influence of aluminum chloride or when the hydrocarbon mixture is passed over a silica-alumina catalyst and Brochet3 obtained 2-phenyl-hexane from benzene and 1-hexene. The C-C bond is always formed to the doubly bonded carbon atom carrying the smaller number of hydrogen atoms benzene and propene, for instance, give cumene, which is important as intermediate in the preparation of phenol. Corson and Ipatieff4 report that benzene reacts especially readily with cyclohexene, yielding cyclohexylbenzene ... [Pg.846]

This growth reaction is hindered by concurrently occurring olefin displacement reactions [Eq. (32)]. In essence, however, it presents a method of building long carbon chains from ethylene by using the initial aluminum alkyl as a framework. The exciting aspect is that introduction of certain... [Pg.97]


See other pages where Carbon-1 3 from ethylene-1-olefin is mentioned: [Pg.173]    [Pg.44]    [Pg.432]    [Pg.95]    [Pg.182]    [Pg.268]    [Pg.58]    [Pg.286]    [Pg.259]    [Pg.163]    [Pg.126]    [Pg.201]    [Pg.162]    [Pg.279]    [Pg.180]    [Pg.151]    [Pg.459]    [Pg.52]    [Pg.307]    [Pg.14]    [Pg.367]    [Pg.226]    [Pg.222]    [Pg.459]    [Pg.783]    [Pg.268]    [Pg.815]    [Pg.74]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Carbon ethylene

Carbon olefinic

Carbonates, olefination

Ethylene carbonate

Ethylene olefination

Ethylene/1-olefin

© 2024 chempedia.info