Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide solid state

Scholten, M.J., Schoonman, J., Miltenburg, J.C., and Oonk, H.A.J. (1993) Synthesis of strontium and barium cerate and their reaction with carbon dioxide. Solid State Ionics, 61, 83-91. [Pg.736]

Solid-Gas Equilibria Sublimation is not very familiar because solids have much lower vapor pressures than liquids. A substance sublimes rather than melts because the intermolecular attractions are not great enough to keep the molecules near each other when they leave the solid state. Some soUds do have high enough vapor pressures to sublime at ordinary conditions, including dry ice (carbon dioxide), solid iodine, and moth repellants, aU nonpolar molecules with weak intermolecular forces. [Pg.360]

Figure 2. The bulk density-pressure dependence for carbon dioxide. Solid line experimental data, squares DFT equation of state, diamonds GCMC simulations. Figure 2. The bulk density-pressure dependence for carbon dioxide. Solid line experimental data, squares DFT equation of state, diamonds GCMC simulations.
Although the continuous-countercurrent type of operation has found limited application in the removal of gaseous pollutants from process streams (Tor example, the removal of carbon dioxide and sulfur compounds such as hydrogen sulfide and carbonyl sulfide), by far the most common type of operation presently in use is the fixed-bed adsorber. The relatively high cost of continuously transporting solid particles as required in steady-state operations makes fixed-bed adsorption an attractive, economical alternative. If intermittent or batch operation is practical, a simple one-bed system, cycling alternately between the adsorption and regeneration phases, 1 suffice. [Pg.2187]

Any given pure substance may exist in three states as a solid, as liquid or as vapor. Under certain conditions, it may exist as a combination of any two phases and changes in conditions may alter the proportions of the two phases. There is also a condition where all three phases may exist at the same time. This is known as the triple point. Water has a triple point at near 32°F and 14.696 psia. Carbon dioxide may exist as a vapor, a liquid and solid simultaneously at about minus 69.6°F and 75 psia. Substances under proper conditions may pass directly from a solid to a vapor phase. This is known as sublimation. [Pg.634]

Hence, water, ammonia, hydrogen fluoride and carbon dioxide separate from the mixture into the gaseous phase. However, despite the possibility of a solid-state interaction, the application of ammonium acetate solutions for washing of... [Pg.299]

It should be noted that calcium bicarbonate does not exist in the solid state rather, it exists as an unstable salt in water, provided that an excess of free carbon dioxide is available to maintain equilibrium. The reaction is shown below. [Pg.222]

The thermodynamic properties of a chemical substance are dependent upon its state and, therefore, it is important to indicate conditions when writing chemical reactions. For example, in the burning of methane to form carbon dioxide and water, it is important to specify whether each reactant and product are solid, liquid, or gaseous since different changes in the thermodynamic property will occur depending upon the state of each substance. Thus, different volume and energy changes occur in the reactions... [Pg.7]

Measurements of product gas evolution, mass loss or evolved gas analysis may all be used to study the kinetics of a solid—solid interaction provided that there is strict adherence to the condition that gas evolution occurs concurrently with the solid state process. Clearly this approach is only applicable if there is direct experimental support for a single step process. For example, carbon dioxide release is identified [410] as being... [Pg.37]

One of the major uses of DTA has been to follow solid-state reactions as they occur. All decomposition reactions (loss of hydrates, water of constitution, decomposition of inorganic anions, e.g.- carbonate to carbon dioxide gas, etc.) are endothermic and irreversible. Likewise are the synthesis reactions such as... [Pg.376]

It reacts violently with carbon dioxide even if both compounds are in the solid state carbon dioxide cannot be used as an extinguishing agent for sodium fires. [Pg.172]

With carbon dioxide in the solid state the mixture detonates on impact. Therefore, with graphite, carbon dioxide cannot be used as an extinguishing agent for potassium fires. The slow reaction of potassium with gaseous carbon dioxide at ambient temperature gave rise to an accident. Potassium was stored in an aluminium container in a laboratory in contact with carbon dioxide the formation of potassium carbonate caused the corrosion of the container, which caused potassium to combust on contact with air. [Pg.193]

We use variants of profile extrusion to produce tubing -with diameters of less then 1 mm and pipes with diameters exceeding 1 m, Wall thicknesses can vary from a few tens of micrometers up to several centimeters. Extruded window and door frames are more complex than pipes. Such profiles are largely hollow with internal ribs and fins that reinforce and divide the interior into two or more channels. We use solid rubber profiles in applications such as door seals and windshield wipers. We can produce foamed extrudates by incorporating a blowing agent, such as butane or carbon dioxide, into the polymer in the molten state. As the polymer exits the die, its internal pressure drops and the dissolved gas expands to form bubbles within the product. Examples of foamed extrudates include pipe insulation and automobile door gaskets. [Pg.218]

Ans. The log plus oxygen has a certain mass. The ashes plus the carbon dioxide and water (and perhaps a few other compounds) must have a combined mass which totals the same as the combined mass of the log and oxygen. The law does not state that the total mass before and after the reaction must be the mass of the solids only. [Pg.52]

In a later publication,96 the standard free energy of formation of the products, AG in V, was used instead of AH in Eq. (23) so that comparisons could be made with the commonly reported efficiencies of solid state solar cells. For the reduction of carbon dioxide to organic compounds, the optical conversion efficiency of the system is the sum of the efficiencies for each product. Thus, it can be given as... [Pg.350]

Yoon el al. [112] reported an all-solid-state sensor for blood analysis. The sensor consists of a set of ion-selective membranes for the measurement of H+, K+, Na+, Ca2+, and Cl. The metal electrodes were patterned on a ceramic substrate and covered with a layer of solvent-processible polyurethane (PU) membrane. However, the pH measurement was reported to suffer severe unstable drift due to the permeation of water vapor and carbon dioxide through the membrane to the membrane-electrode interface. For conducting polymer-modified electrodes, the adhesion of conducting polymer to the membrane has been improved by introducing an adhesion layer. For example, polypyrrole (PPy) to membrane adhesion is improved by using an adhesion layer, such as Nafion [60] or a composite of PPy and Nafion [117],... [Pg.304]

RESS [Rapid Expansion of Supercritical Solutions] A process for depositing a film of solid material on a surface. The substance is dissolved in supercritical carbon dioxide. When the pressure is suddenly reduced, the fluid reverts to the gaseous state and the solute is deposited on the walls of the vessel. Used for size-reduction, coating, and microencapsulation. First described in 1879. Developed in 1983 by R. D. Smith at the Battelle Pacific Northwest Laboratory. [Pg.227]

And each particle in the gaseous state can move at amazingly high speeds indeed, they are often supersonic. For example, an average atom of helium travels at a mean speed of 1204 ms-1 at 273.15 K. Table 1.4 lists the mean speeds of a few other gas molecules at 273.15 K. Notice how heavier molecules travel more slowly, so carbon dioxide has a mean speed of 363 ms-1 at the same temperature. This high speed of atomic and molecular gases as they move is a manifestation of their enormous kinetic energy. It would not be possible to travel so fast in a liquid or solid because they are so much denser - we call them condensed phases. [Pg.30]

The discovery of supercritical fluids occurred in 1879, when Thomas Andrews actually described the supercritical state and used the term critical point. A supercritical fluid is a material above its critical point. It is not a gas, or a liquid, although it is sometimes referred to as a dense gas. It is a separate state of matter defined as all matter by both its temperature and pressure. Designation of common states in liquids, solids and gases, assume standard pressure and temperature conditions, or STP, which is atmospheric pressure and 0°C. Supercritical fluids generally exist at conditions above atmospheric pressure and at an elevated temperature. Figure 16.1 shows the typical phase diagram for carbon dioxide, the most commonly used supercritical fluid [1]. [Pg.564]

Again the close correspondence between the measured radical and carbon dioxide yields for 7-radiolysis of the N-acetyl amino acids in the solid state suggests that the mechanisms for radical production and carbon dioxide formation are closely related, as they were for the aliphatic carboxylic acids. The following mechanism has been proposed (5.) in order to account for the major degradation products and observed radical intermediates. [Pg.88]

POLYCARBOXYLIC ACIDS The gamma radiolysis of the homopolymers of acrylic, methacrylic and itaconic acids have been investigated in the solid state at 303 K, and in each case the yields of carbon monoxide, carbon dioxide and of radical intermediates have been measured. These are reported in Tables VII and VIII respectively. [Pg.88]

Amination (11) and solution carbonation (8) reactions were carried out as described previously. For solid-state carbonations, a benzene solution of poly(styryl)lithium was freeze-dried on the vacuum line followed by introduction of high-purity, gaseous carbon dioxide (Air Products, 99.99% pure). Analysis and characterization of polymeric amines (11) and carboxylic acids (8) were performed as described previously. Benzoyl derivatives of the aminated polystyrenes were prepared in toluene/pyridine (2/1. v/v) mixtures with benzoyl chloride (Aldrich, 99%). [Pg.140]


See other pages where Carbon dioxide solid state is mentioned: [Pg.46]    [Pg.638]    [Pg.200]    [Pg.317]    [Pg.75]    [Pg.260]    [Pg.7]    [Pg.5]    [Pg.4]    [Pg.242]    [Pg.26]    [Pg.425]    [Pg.191]    [Pg.70]    [Pg.9]    [Pg.2]    [Pg.415]    [Pg.821]    [Pg.293]    [Pg.363]    [Pg.151]    [Pg.1156]    [Pg.37]    [Pg.14]    [Pg.43]    [Pg.921]    [Pg.167]    [Pg.139]   
See also in sourсe #XX -- [ Pg.812 , Pg.813 , Pg.823 , Pg.831 ]




SEARCH



Carbon dioxide solid

Carbon solid state

Solid carbon

© 2024 chempedia.info