Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide power production

The carbon dioxide by-product is sequestered in mineral formations at depths up to around 2000 m. For power plants located near petroleum-bearing formations, carbon dioxide can be pumped into oil-bearing mineral formations for tertiary petroleum recovery. [Pg.473]

Carbon dioxide neutral production and utilization of methanol as an automotive fuel for the transport sector integrated with production of electric power and district heat could be achieved with biomass combined with natural gas or coal as a raw material. An amoimt of CO2 corresponding to the carbon in the fossil fuel then has to be captured and disposed into, e.g., an aquifer. Examples of a few such options... [Pg.145]

Concentrated sulphuric acid is an oxidising agent, particularly when hot, but the oxidising power of sulphuric acid decreases rapidly with dilution. The hot concentrated acid will oxidise non-metals, for example carbon, sulphur and phosphorous to give, respectively, carbon dioxide, sulphur dioxide and phosphoric(V) acid. It also oxidises many metals to give their sulphates cast iron, however, is not affected. The mechanisms of these reactions are complex and the acid gives a number of reduction products. [Pg.301]

Cmde gas leaves from the top of the gasifier at 288—593°C depending on the type of coal used. The composition of gas also depends on the type of coal and is notable for the relatively high methane content when contrasted to gases produced at lower pressures or higher temperatures. These gas products can be used as produced for electric power production or can be treated to remove carbon dioxide and hydrocarbons to provide synthesis gas for ammonia, methanol, and synthetic oil production. The gas is made suitable for methanation, to produce synthetic natural gas, by a partial shift and carbon dioxide and sulfur removal. [Pg.70]

The laser spray process uses a high power carbon dioxide laser focused onto the surface of the part to be metallized. A carrier gas such as belium blows metal particles into the path of the laser and onto the part. The laser melted particles may fuse to the surface, or may be incorporated into an aHoy in a molten surface up to 1-mm thick. The laser can be used for selective aHoying of the surface, for production of amorphous coatings, or for laser hardening. [Pg.136]

Safety provisions have proven highly effective. The nuclear power industry in the Western world, ie, outside of the former Soviet Union, has made a significant contribution of electricity generation, while surpassing the safety record of any other principal industry. In addition, the environmental record has been outstanding. Nuclear power plants produce no combustion products such as sulfuric and nitrous oxides or carbon dioxide (qv), which are... [Pg.234]

But for power station applications, the thermal efficiency is not the only measure of the performance of a plant. While a new type of plant may involve some reduction in running costs due to improved thermal efficiency, it may also involve additional capital costs. The cost of electricity produced is the crucial criterion within the overall economics, and this depends not only on the thermal efficiency and capital costs, but also on the price of fuel, operational and maintenance costs, and the taxes imposed. Yet another factor, which has recently become important, is the production by gas turbine plants of greenhouse gases (mainly carbon dioxide) which contribute to global warming. Many countries are now considering the imposition of a special tax on the amount of CO2 produced by a power plant, and this may adversely affect the economics. So consideration of a new plant in future will involve not only the factors listed above but also the amount of CO2 produced per unit of electricity together with the extra taxes that may have to be paid. [Pg.131]

In electrical power stations a new measure of the performance is the amount of CO2 produced per unit of electricity generated, i.e. A = kg(C02)/kWh this quantity can be non-dimensionalised by writing A = A( 16/44)(LCV) where (16/44) is the mass ratio of fuel to CO2 for methane and (LCV) in its lower heating value. However, presenting the plant s green performance in terms of A directly allows the cost of any tax on the carbon dioxide to be added to the untaxed cost of electricity production most easily. [Pg.192]

Transportation accounts for about one-fourth of the primary energy consumption in the United States. And unlike other sectors of the economy that can easily switch to cleaner natural gas or electricity, automobiles, trucks, nonroad vehicles, and buses are powered by internal-combustion engines burning petroleum products that produce carbon dioxide, carbon monoxide, nitrogen oxides, and hydrocarbons. Efforts are under way to accelerate the introduction of electric, fuel-cell, and hybrid (electric and fuel) vehicles to replace sonic of these vehicles in both the retail marketplace and in commercial, government, public transit, and private fleets. These vehicles dramatically reduce harmful pollutants and reduce carbon dioxide emissions by as much as 50 percent or more compared to gasoline-powered vehicles. [Pg.479]

Reversing the process yields an efficient method of energy storage. The process inputs combustion products such as carbon dioxide and water, and energy in tlie form of electricity or shaft power, and outputs oxygen and fuel (typically hydrogen or hydrocarbons). [Pg.812]

Alternatives to fossil fuels, such as hydrogen, are explored in Box 6.2 and Section 14.3. Coal, which is mostly carbon, can be converted into fuels with a lower proportion of carbon. Its conversion into methane, CH4, for instance, would reduce C02 emissions per unit of energy. We can also work with nature by accelerating the uptake of carbon by the natural processes of the carbon cycle. For example, one proposed solution is to pump C02 exhaust deep into the ocean, where it would dissolve to form carbonic acid and bicarbonate ions. Carbon dioxide can also be removed from power plant exhaust gases by passing the exhaust through an aqueous slurry of calcium silicate to produce harmless solid products ... [Pg.731]

What has changed in the last few hundred years is the additional release of carbon dioxide by human activities. Fossil fuels burned to run cars and trucks, heat homes and businesses, and power factories are responsible for about 98% of carbon dioxide emissions, 24% of methane emissions, and 18% of nitrous oxide emissions. Increased agriculture, deforestation, landfills, industrial production, and mining also contribute a significant share of emissions (5). For example, in 1997, the United States emitted about one-fifth of total global greenhouse gases. [Pg.91]

In 1969 Air Products Chemicals began delivering carbon dioxide and hydrogen to customers in the Houston area via pipeline. There was also talk of shipping methanol by pipeline. A 273-mile pipeline was also opened in 1969 to convey 660 tons/hr of slurried coal from Kayenta, Arizona, to a power plant in southern Nevada. A previous coal pipeline in Ohio closed down in the mid-1960s because it proved to be uneconomical when the railroads reduced their rates.5... [Pg.30]

Reduction of carbon dioxide takes place at various metal electrodes. The main products are formic acid in aqueous solutions and oxalate, CO, and formic acid in nonaqueous solutions. An indium electrode is the most potential saving for C02 reduction. Due to the difference in optimum conditions between those for C02 reduction to formic acid and those for formic acid reduction to further reduced products, direct reduction of C02 in aqueous solutions without a catalyst to highly reduced products seems to be difficult at metal electrodes. However, catalytic effects of metal electrodes themselves have recently become more clear for example, on Cu, methane was detected, while on Ag and Au, CO was produced effectively in aqueous solutions. Furthermore, at a Mo electrode, methanol was obtained. The power efficiency is, however, still low at any electrode. [Pg.390]


See other pages where Carbon dioxide power production is mentioned: [Pg.139]    [Pg.44]    [Pg.474]    [Pg.339]    [Pg.218]    [Pg.17]    [Pg.21]    [Pg.267]    [Pg.269]    [Pg.279]    [Pg.3]    [Pg.165]    [Pg.2228]    [Pg.44]    [Pg.45]    [Pg.216]    [Pg.163]    [Pg.250]    [Pg.884]    [Pg.1188]    [Pg.69]    [Pg.309]    [Pg.248]    [Pg.253]    [Pg.552]    [Pg.766]    [Pg.788]    [Pg.94]    [Pg.328]    [Pg.330]    [Pg.136]    [Pg.168]    [Pg.439]    [Pg.5]    [Pg.50]    [Pg.101]    [Pg.306]   
See also in sourсe #XX -- [ Pg.543 ]




SEARCH



Carbon dioxide production

Carbon product

Carbonates production

Power product

© 2024 chempedia.info