Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon alkenes and

Although ethylene is the only two carbon alkene and propene the only three carbon alkene there are four isomeric alkenes of molecular formula C4Hj ... [Pg.192]

Simple alkenes are named by following the name of the corresponding alkyl group with ene, as in ethylene and propylene. Alkynes can be named as derivatives of the simplest alkyne, acetylene. Vinyl is the prefix designation for a two carbon alkene and allyl for a three carbon alkene. [Pg.59]

Figure 15.4. Stepwise Substitutions of Homomorphic Ligands to Determine Prochirostereogenicity and Proachirostereogenicity of Tetrahedral Carbon, Alkenes and Allenes (atoms marked with black dots)... Figure 15.4. Stepwise Substitutions of Homomorphic Ligands to Determine Prochirostereogenicity and Proachirostereogenicity of Tetrahedral Carbon, Alkenes and Allenes (atoms marked with black dots)...
The use of a difluoroborane, RBF2, precursor has proved to be a successful strategy for alkyl, alkenyl and aUcynyl derivatives of xenon(II). Xenon-carbon(alkene) and Xe-C(alkyne) bond formation is illustrated by reactions 18.20 and 18.21. [Pg.570]

An alkene is a hydrocarbon that contains a carbon-carbon double bond, and an alkyne is a hydrocarbon that contains a triple bond. Because they contain fewer hydrogens than alkanes with the same number of carbons, alkenes and alkynes are said to be imsaturated. [Pg.241]

Cobalt has an odd number of electrons, and does not form a simple carbonyl in oxidation state 0. However, carbonyls of formulae Co2(CO)g, Co4(CO)i2 and CoJCO),6 are known reduction of these by an alkali metal dissolved in liquid ammonia (p. 126) gives the ion [Co(CO)4] ". Both Co2(CO)g and [Co(CO)4]" are important as catalysts for organic syntheses. In the so-called oxo reaction, where an alkene reacts with carbon monoxide and hydrogen, under pressure, to give an aldehyde, dicobalt octacarbonyl is used as catalyst ... [Pg.405]

Within the predictive capabilities of the models, reactivity is given by bThe larger r- the more reactive the molecule (or ion or radical). Note that the tenriinal carbon atoms in buta-1,3-diene are predicted by Iltiekcl theoiy to be slightly more reactive than the carbon atoms in ethylene. Qualitative eoirelation with experience is seen fur sume alkenes and free radicals in Fig. 7-3,... [Pg.217]

The regioselectivity benefits from the increased polarisation of the alkene moiety, reflected in the increased difference in the orbital coefficients on carbon 1 and 2. The increase in endo-exo selectivity is a result of an increased secondary orbital interaction that can be attributed to the increased orbital coefficient on the carbonyl carbon ". Also increased dipolar interactions, as a result of an increased polarisation, will contribute. Interestingly, Yamamoto has demonstrated that by usirg a very bulky catalyst the endo-pathway can be blocked and an excess of exo product can be obtained The increased di as tereo facial selectivity has been attributed to a more compact transition state for the catalysed reaction as a result of more efficient primary and secondary orbital interactions as well as conformational changes in the complexed dienophile" . Calculations show that, with the polarisation of the dienophile, the extent of asynchronicity in the activated complex increases . Some authors even report a zwitteriorric character of the activated complex of the Lewis-acid catalysed reaction " . Currently, Lewis-acid catalysis of Diels-Alder reactions is everyday practice in synthetic organic chemistry. [Pg.12]

Another feature of the Pd—C bonds is the excellent functional group tolerance. They are inert to many functional groups, except alkenes and alkynes and iodides and bromides attached to sp carbons, and not sensitive to H2O, ROH, and even RCO H. In this sense, they are very different from Grignard reagents, which react with carbonyl groups and are easily protonated. [Pg.17]

Alkenes coordinated by Pd(II) are attacked by carbon nucleophiles, and carbon-carbon bond formation takes place. The reaction of alkenes with carbon nucleophiles via 7r-allylpalladium complexes is treated in Section 3.1. [Pg.47]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Acyl halides are intermediates of the carbonylations of alkenes and organic-halides. Decarbonylation of acyl halides as a reversible process of the carbo-nylation is possible with Pd catalyst. The decarbonylation of aliphatic acid chlorides proceeds with Pd(0) catalyst, such as Pd on carbon or PdC, at around 200 °C[109,753]. The product is a mixture of isomeric internal alkenes. For example, when decanoyl chloride is heated with PdCF at 200 C in a distillation flask, rapid evolution of CO and HCl stops after I h, during which time a mixture of nonene isomers was distilled off in a high yield. The decarbonylation of phenylpropionyl chloride (883) affords styrene (53%). In addition, l,5-diphenyl-l-penten-3-one (884) is obtained as a byproduct (10%). formed by the insertion of styrene into the acyl chloride. Formation of the latter supports the formation of acylpalladium species as an intermediate of the decarbonylation. Decarbonylation of the benzoyl chloride 885 can be carried out in good yields at 360 with Pd on carbon as a catalyst, yielding the aryl chloride 886[754]. [Pg.258]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

Aliphatic hydrocarbons include three major groups alkanes alkenes and alkynes Alkanes are hydrocarbons m which all the bonds are single bonds alkenes contain at least one carbon-carbon double bond and alkynes contain at least one carbon-carbon... [Pg.57]

The longest continuous chain that includes the double bond forms the base name of the alkene and the chain is numbered in the direction that gives the doubly bonded carbons their lower numbers The locant (or numerical position) of only one of the dou bly bonded carbons is specified in the name it is understood that the other doubly bonded carbon must follow in sequence... [Pg.188]

Bonding m alkenes is described according to an sp orbital hybridization model The double bond unites two sp hybridized carbon atoms and is made of a ct component and a rr component The ct bond arises by over lap of an sp hybrid orbital on each carbon The rr bond is weaker than the CT bond and results from a side by side overlap of p orbitals... [Pg.220]

The two dimers of (CH3)2C=CH2 are formed by the mechanism shown m Figure 6 16 In step 1 protonation of the double bond generates a small amount of tert butyl cation m equilibrium with the alkene The carbocation is an electrophile and attacks a second molecule of 2 methylpropene m step 2 forming a new carbon-carbon bond and generating a carbocation This new carbocation loses a proton m step 3 to form a mixture of 2 4 4 tnmethyl 1 pentene and 2 4 4 tnmethyl 2 pentene... [Pg.266]

Stereochemistry refers to chemistry in three dimensions Its foundations were laid by Jacobus van t Hoff and Joseph Achille Le Bel m 1874 Van t Hoff and Le Bel mde pendently proposed that the four bonds to carbon were directed toward the corners of a tetrahedron One consequence of a tetrahedral arrangement of bonds to carbon is that two compounds may be different because the arrangement of their atoms m space IS different Isomers that have the same constitution but differ m the spatial arrangement of their atoms are called stereoisomers We have already had considerable experience with certain types of stereoisomers—those involving cis and trans substitution patterns m alkenes and m cycloalkanes... [Pg.281]

Monocyclic Aliphatic Hydrocarbons. Monocyclic aliphatic hydrocarbons (with no side chains) are named by prefixing cyclo- to the name of the corresponding open-chain hydrocarbon having the same number of carbon atoms as the ring. Radicals are formed as with the alkanes, alkenes, and alkynes. Examples ... [Pg.5]

DiisononylPhthalate andDiisodeeylPhthalate. These primary plasticizers are produced by esterification of 0x0 alcohols of carbon chain length nine and ten. The 0x0 alcohols are produced through the carbonylation of alkenes (olefins). The carbonylation process (eq. 3) adds a carbon unit to an alkene chain by reaction with carbon monoxide and hydrogen with heat, pressure, and catalyst. In this way a Cg alkene is carbonylated to yield a alcohol a alkene is carbonylated to produce a C q alcohol. Due to the distribution of the C=C double bond ia the alkene and the varyiag effectiveness of certain catalysts, the position of the added carbon atom can vary and an isomer distribution is generally created ia such a reaction the nature of this distribution depends on the reaction conditions. Consequendy these alcohols are termed iso-alcohols and the subsequent phthalates iso-phthalates, an unfortunate designation ia view of possible confusion with esters of isophthaUc acid. [Pg.122]


See other pages where Carbon alkenes and is mentioned: [Pg.691]    [Pg.295]    [Pg.444]    [Pg.444]    [Pg.250]    [Pg.18]    [Pg.165]    [Pg.691]    [Pg.295]    [Pg.444]    [Pg.444]    [Pg.250]    [Pg.18]    [Pg.165]    [Pg.21]    [Pg.209]    [Pg.293]    [Pg.126]    [Pg.46]    [Pg.127]    [Pg.209]    [Pg.367]    [Pg.220]    [Pg.237]    [Pg.405]    [Pg.425]    [Pg.873]    [Pg.550]    [Pg.308]   
See also in sourсe #XX -- [ Pg.806 , Pg.813 , Pg.814 ]




SEARCH



Carbon alkenes

© 2024 chempedia.info