Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary phenomena pressures

Pressure drop due to capillary phenomena Pressure drop in the outlets of the separator Pressure drop in the straight channel of separator Pressure drop across the membrane... [Pg.325]

Condensation can, therefore, take place in narrow capillaries at pressures which are lower than the normal saturation vapour pressure. Zsigmondy (1911) suggested that this phenomenon might also apply to porous solids. Capillary rise in the pores of a solid will usually be so large that the pores will tend to be either completely full of capillary condensed liquid or completely empty. Ideally, at a certain pressure below the normal condensation pressure all the pores of a certain size and below will be filled with liquid and the rest will be empty. It is probably more realistic to assume that an adsorbed monomolecular film exists on the pore walls before capillary condensation takes place. By a corresponding modification of the pore diameter, an estimate of pore size distribution (which will only be of statistical significance because of the complex shape of the pores) can be obtained from the adsorption isotherm. [Pg.125]

Recently, we have provided evidence that hypoxic reperfusion injury occurs in the inflamed human joint [2,12,13]. Joint movement in patients with RA produces intra-articular pressures in excess of the synovial capillary perfusion pressure. This phenomenon does not occur in normal joints, where the pressure remains subatmospheric throughout a movement cycle. During exercise of the inflamed joint, the intra-articular pressure is transmitted directly to the synovial membrane vasculature, producing occlusion of the superficial synovial capillary bed and ischaemia. Reperfusion of the synovial membrane occurs when exercise is stopped. Recently, electron spin resonance spectroscopy with spin trapping was employed to demonstrate that synovial tissue from a patient with RA generated ROI following a transient hypoxic... [Pg.363]

The most important property of superabsorbent polymers is their ability to absorb water. Traditional water-absorbing materials such as cotton, pulp and sponges absorb water into interstices by capillary phenomenon. By contrast, superabsorbent polymer absorbs water into three-dimensional (3D) networks of a erosslinked polymer by the compatibility of polymer chains and water and by osmotic pressure. Hence, superabsorbent polymers laek absorption speed but have a much better water-absorption eapaeity eompared to cotton or pulp. Products that have a high water-absorption property include sanitary produets, such as disposable diapers, eonstmetion materials, mulch, water sealant for electric cables, freshness maintenance materials in the food industry. Of the sanitary products, of the disposable diaper is the best example of a product that has a high waterabsorbing capacity. The superabsorbent polymer is indispensable for disposable diapers, and it drastically improved the performance of disposable diapers. Here, the development and current status of disposable diapers, the structure of disposable diapers in which a superabsorbent polymer is incorporated, and advances in the development of superabsorbent polymers will be described. [Pg.896]

Mercury porosimetry is based on the capillary rise phenomenon whereby an excess pressure is required to cause a non-wetting liquid to climb up a narrow capillary. The pressure difference across the interface is given by the equation of Young and Laplace [3 sic] and its sign is such that the pressure is less in the liquid than in the gas (or... [Pg.150]

Let us consider one more physical phenomenon, which can influence upon PT sensitivity and efficiency. There is a process of liquid s penetration inside a capillary, physical nature of that is not obvious up to present time. Let us consider one-side-closed conical capillary immersed in a liquid. If a liquid wets capillary wall, it flows towards cannel s top due to capillary pressure pc. This process is very fast and capillary imbibition stage is going on until the liquid fills the channel up to the depth l , which corresponds the equality pcm = (Pc + Pa), where pa - atmospheric pressure and pcm - the pressure of compressed air blocked in the channel. [Pg.615]

There are two approaches to explain physical mechanism of the phenomenon. The first model is based on the existence of the difference between the saturated vapor pressures above two menisci in dead-end capillary. It results in the evaporation of a liquid from the meniscus of smaller curvature ( classical capillary imbibition) and the condensation of its vapor upon the meniscus of larger curvature originally existed due to capillary condensation. [Pg.616]

At first we tried to explain the phenomenon on the base of the existence of the difference between the saturated vapor pressures above two menisci in dead-end capillary [12]. It results in the evaporation of a liquid from the meniscus of smaller curvature ( classical capillary imbibition) and the condensation of its vapor upon the meniscus of larger curvature originally existed due to capillary condensation. We worked out the mathematical description of both gas-vapor diffusion and evaporation-condensation processes in cone s channel. Solving the system of differential equations for evaporation-condensation processes, we ve derived the formula for the dependence of top s (or inner) liquid column growth on time. But the calculated curves for the kinetics of inner column s length are 1-2 orders of magnitude smaller than the experimental ones [12]. [Pg.616]

One more experimental result, which is important for PT is as follows. Only polar liquids fill conical capillaries from both sides. We used various penetrants to fill conical defects Pion , LZh-6A , LZhT , LUM-9 etc. It was established that only the penetrants containing polar liquid as the basic liquid component (various alcohols, water and others) manifest two-side filling phenomenon. This result gives one more confirmation of the physical mechanism of the phenomenon, based on liquid film flow, because the disjoining pressure strongly depends just on the polarity of a liquid. [Pg.618]

For some types of wetting more than just the contact angle is involved in the basic mechanism of the action. This is true in the laying of dust and the wetting of a fabric since in these situations the liquid is required to penetrate between dust particles or between the fibers of the fabric. TTie phenomenon is related to that of capillary rise, where the driving force is the pressure difference across the curved surface of the meniscus. The relevant equation is then Eq. X-36,... [Pg.469]

Here the phenomenon of capillary pore condensation comes into play. The adsorption on an infinitely extended, microporous material is described by the Type I isotherm of Fig. 5.20. Here the plateau measures the internal volume of the micropores. For mesoporous materials, one will first observe the filling of a monolayer at relatively low pressures, as in a Type II isotherm, followed by build up of multilayers until capillary condensation sets in and puts a limit to the amount of gas that can be accommodated in the material. Removal of the gas from the pores will show a hysteresis effect the gas leaves the pores at lower equilibrium pressures than at which it entered, because capillary forces have to be overcome. This Type IV isotherm. [Pg.188]

The capillary pressure PC(S) exhibits a marked hysteresis phenomenon when the liquid is alternately withdrawn (drainage) and introduced (imbibition) into the particulate bed. Consequently, capillary pressure changes as a result of variations in saturation do not follow a unique functional relationship. In fact, the suction is always higher on the drainage side of the imbibition-drainage cycle (M8). In Fig. 7 the suction curve starts at zero when S = 1. [Pg.70]

Although a number of methods are available to characterize the interstitial voids of a solid, the most useful of these is mercury intrusion porosimetry [52], This method is widely used to determine the pore-size distribution of a porous material, and the void size of tablets and compacts. The method is based on the capillary rise phenomenon, in which excess pressure is required to force a nonwetting liquid into a narrow volume. [Pg.21]

Vapor sorption onto porous solids differs from vapor uptake onto the surfaces of flat materials in that a vapor (in the case of interest, water) will condense to a liquid in a pore structure at a vapor pressure, Pt, below the vapor pressure, P°, where condensation occurs on flat surfaces. This is generally attributed to the increased attractive forces between adsorbate molecules that occur as surfaces become highly curved, such as in a pore or capillary. This phenomenon is referred to as capillary condensation and is described by the Kelvin equation [19] ... [Pg.394]

In the subsurface, capillary forces can be active in all three dimensions depending on the location of the water source. Regardless of the direction of movement, the water is moving in the direction of least pressure. This phenomenon is often called... [Pg.82]

Juza and Blanke (125) investigated the reaction of carbon and sulfur between 100 and 1000° at various pressures. They thought it unlikely that there was genuine chemical bonding. The phenomenon of sulfur fixation was ascribed to capillary condensation, adsorption, chemisorption, and solution in the carbon structure. [Pg.212]

When using PFT with a neutral selector, it is quite difficult to avoid any entrance of the chiral selector into the ionization source, particularly at a high pH, where EOF is important. The use of BGE at low pH and/or coated capillary to minimize EOF is therefore mandatory. However, the coaxial sheath gas, which generally assists the ionization process, leads to an aspirating phenomenon of the chiral selector in the MS direction. Javerfalk et al. were the first to apply PFT with a neutral methyl-/i-CD for the separation of racemic bupivacaine and ropivacaine with a polyacrylamide-coated capillary and an acidic pH buffer (pH 3). Cherkaoui et al. employed another neutral CD (HP-/1-CD) with a PVA-coated capillary for the analysis of amphetamines and their derivatives. To prevent a detrimental aspiration effect, analyses were carried out without nebulization pressure. Numerous other studies presented excellent results such as the enantioselective separation of adrenoreceptor antagonist drugs using tandem mass spectrometry (MS/MS) the separation of clenbuterol enantiomers after solid-phase extraction (SPE) of plasma samples or the use of CD dual system for the simultaneous chiral determination of amphetamine, methamphetamine, dimethamphetamine, and p-hydroxymethamphetamine in urine. [Pg.487]

Figure 2.7 shows a typical pneumatic nebulization system for a premixed flame. The sample is sucked up a plastic capillary tube. In the type of concentric nebulizer illustrated here, the sample liquid is surrounded by the oxidant gas as it emerges from the capillary. The high velocity of this gas, as it issues from the tiny annular orifice, creates a pressure drop which sucks up, draws out and shatters the liquid into very tiny droplets. This phenomenon is known as the venturi effect and is illustrated in Fig. 2.8. [Pg.28]

The concept of a pore potential is generally accepted in gas adsorption theory to account for capillary condensation at pressures well below the expected values. Gregg and Sing ° described the intensification of the attractive forces acting on adsorbate molecules by overlapping fields from the pore wall. Adamson has pointed out that evidence exists for changes induced in liquids by capillary walls over distances in the order of a micron. The Polanyi potential theory postulates that molecules can fall into the potential field at the surface of a solid, a phenomenon which would be greatly enhanced in a narrow pore. [Pg.128]

Consider that a potential difference is applied across a glass capillary tube filled with an electrolytic solution (Fig. 6.134). What would one expect Of course, one would expect a current to flow through the capillary according to Ohm s law. In practice, however, a remarkable and unexpected phenomenon is observed. In addition to the current, the solution itself begins to flow—the phenomenon of electro-osmosis. Liquid flow is generally associated with the application of a pressure gradient, but in this case it appears that a potential difference is doing the job normally achieved by a pressure difference. [Pg.289]

The take up of water or other liquids within the cell walls of wood involve the take up of a molecule at a time and its movement from one adsorption site to another (molecular jump phenomenon) under a concentration gradient. This is distinct from flow of bulk liquids into the coarse capillary structure under a capillary force or pressure gradient. [Pg.123]

Sample introduction is a major hardware problem for SFC. The sample solvent composition and the injection pressure and temperature can all affect sample introduction. The high solute diffusion and lower viscosity which favor supercritical fluids over liquid mobile phases can cause problems in injection. Back-diffusion can occur, causing broad solvent peaks and poor solute peak shape. There can also be a complex phase behavior as well as a solubility phenomenon taking place due to the fact that one may have combinations of supercritical fluid (neat or mixed with sample solvent), a subcritical liquified gas, sample solvents, and solute present simultaneously in the injector and column head [2]. All of these can contribute individually to reproducibility problems in SFC. Both dynamic and timed split modes are used for sample introduction in capillary SFC. Dynamic split injectors have a microvalve and splitter assembly. The amount of injection is based on the size of a fused silica restrictor. In the timed split mode, the SFC column is directly connected to the injection valve. Highspeed pneumatics and electronics are used along with a standard injection valve and actuator. Rapid actuation of the valve from the load to the inject position and back occurs in milliseconds. In this mode, one can program the time of injection on a computer and thus control the amount of injection. In packed-column SFC, an injector similar to HPLC is used and whole loop is injected on the column. The valve is switched either manually or automatically through a remote injector port. The injection is done under pressure. [Pg.381]

As discussed in more detail below, recent experiments convincingly showed that the flow oscillation in capillary extrusion of LPE is interfacial in nature due to a reversible coil-stretch transition at the melt/die wall boundary. Pressure oscillation phenomenon has also been reported in extrusion of other polymer melts. In particular, there are well-defined oscillations in controlled-rate capillary flow of PB that were found to arise from the same interfacial molecular instability [62]. [Pg.259]

The analysis of these P(h) isotherms emphasises that stratified foam films are formed from both systems (I and II). A phenomenon not revealed so far is that spontaneous (under constant capillary pressure) and forced (under various capillary pressures) stepwise thinning can occur in the same single foam film. A question arises as to whether the film that acquired such a thickness is in thermodynamic equilibrium or is kinetically stabilised. It should be noted that these transitions occur only in the direction of increasing pressure, i.e. the process... [Pg.224]

The quantitative investigation of the films in metastable equilibrium under constant capillary pressure was to a considerable extent impeded by the delayed film drainage (being due to the higher viscosity of the bulk solutions [348]). In that sense the Pressure Balance Technique for investigation of microscopic single foam films allowed to detect all the metastable states of those films. Thus, a phenomenon not previously described has been... [Pg.225]


See other pages where Capillary phenomena pressures is mentioned: [Pg.438]    [Pg.514]    [Pg.169]    [Pg.299]    [Pg.358]    [Pg.587]    [Pg.4]    [Pg.402]    [Pg.274]    [Pg.527]    [Pg.246]    [Pg.22]    [Pg.87]    [Pg.77]    [Pg.183]    [Pg.11]    [Pg.226]    [Pg.125]    [Pg.251]    [Pg.94]    [Pg.74]    [Pg.291]    [Pg.30]    [Pg.229]    [Pg.248]    [Pg.250]    [Pg.261]   
See also in sourсe #XX -- [ Pg.2 , Pg.421 , Pg.422 , Pg.431 ]

See also in sourсe #XX -- [ Pg.2 , Pg.421 , Pg.422 , Pg.431 ]




SEARCH



Capillary phenomena

Capillary pressure

Pressure phenomenon

© 2024 chempedia.info