Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium contraction regulation

Calcium-dependent regulation involves the calcium-calmodulin complex that activates smooth muscle MLCK, a monomer of approximately 135 kDa. Dephosphorylation is initiated by MLCP. MLCP is a complex of three proteins a 110-130 kDa myosin phosphatase targeting and regulatory subunit (MYPT1), a 37 kDa catalytic subunit (PP-1C) and a 20 kDa subunit of unknown function. In most cases, calcium-independent regulation of smooth muscle tone is achieved by inhibition of MLCP activity at constant calcium level inducing an increase in phospho-rMLC and contraction (Fig. 1). [Pg.1142]

Calmodulin (CaM) is a ubiquitous intracellular protein that mediates more than 100 different biological systems in both calcium-free and -loaded forms. CaM has 148 amino acids and its primary sequence is highly conserved in all cell types. It shares strong sequence and structure homology to TnC, which is involved solely in the Calcium-dependent regulation of skeletal and heart muscle contraction. Yeast (yCaM) is 60% identical in sequence to vertebrate CaMs and contains only three functional sites. Several labs have shown that the prokaryotes have several CaM-like proteins containing two or more authentic EF-hand motifs. [Pg.557]

Disease States. Rickets is the most common disease associated with vitamin D deficiency. Many other disease states have been shown to be related to vitamin D. These can iavolve a lack of the vitamin, deficient synthesis of the metaboUtes from the vitamin, deficient control mechanisms, or defective organ receptors. The control of calcium and phosphoms is essential ia the maintenance of normal cellular biochemistry, eg, muscle contraction, nerve conduction, and enzyme function. The vitamin D metaboUtes also have a function ia cell proliferation. They iateract with other factors and receptors to regulate gene transcription. [Pg.139]

Although blood pressure control follows Ohm s law and seems to be simple, it underlies a complex circuit of interrelated systems. Hence, numerous physiologic systems that have pleiotropic effects and interact in complex fashion have been found to modulate blood pressure. Because of their number and complexity it is beyond the scope of the current account to cover all mechanisms and feedback circuits involved in blood pressure control. Rather, an overview of the clinically most relevant ones is presented. These systems include the heart, the blood vessels, the extracellular volume, the kidneys, the nervous system, a variety of humoral factors, and molecular events at the cellular level. They are intertwined to maintain adequate tissue perfusion and nutrition. Normal blood pressure control can be related to cardiac output and the total peripheral resistance. The stroke volume and the heart rate determine cardiac output. Each cycle of cardiac contraction propels a bolus of about 70 ml blood into the systemic arterial system. As one example of the interaction of these multiple systems, the stroke volume is dependent in part on intravascular volume regulated by the kidneys as well as on myocardial contractility. The latter is, in turn, a complex function involving sympathetic and parasympathetic control of heart rate intrinsic activity of the cardiac conduction system complex membrane transport and cellular events requiring influx of calcium, which lead to myocardial fibre shortening and relaxation and affects the humoral substances (e.g., catecholamines) in stimulation heart rate and myocardial fibre tension. [Pg.273]

Sorcin (soluble resistance-related calcium binding protein) was isolated from multidrug-resistant cells and is expressed in a few mammalian tissues such as skeletal muscle, heart, and brain. In the heart, sorcin interacts with the ryanodine receptor and L-type Ca2+-channels regulating excitation in contraction coupling. [Pg.294]

Smooth Muscle Tone Regulation. Figure 1 Mechanisms leading to agonist stimulated calcium-dependent and calcium-independent contraction of smooth muscle. NE, norepinephrine. See text for the other abbreviations. [Pg.1143]

Although in in vivo circumstances an intracellular free calcium increase apparently acts as the primary modulator of contraction, it can be bypassed in highly permeabilized smooth muscle preparations where the active subunit of MLCK can be introduced to phosphorylate myosin and induce contraction. The MLCK catalyzed phosphorylation of serine-19 is seen as the necessary event in the activation of smooth muscle myosin to form crossbridges. Thus, the rising phase of force during an isometric smooth muscle contraction follows an increase in the degree of phosphorylation of myosin, and that in turn follows the transient rise of (a) cytosolic free Ca, (b) Ca-calmodulin complexes, and (c) the active form of MLCK. The regulation of the intracellular calcium is discussed below. The dynam-... [Pg.172]

Ionized calcium is an important regulator of a variety of cellular processes, including muscle contraction, stimulus-secretion coupling, the blood clotting cascade, enzyme activity, and membrane excitability. It is also an intracellular messenger of hormone action. [Pg.463]

More than 99% of total body calcium is found in bone the remaining less than 1% is in the ECF and ICE Calcium plays a critical role in the transmission of nerve impulses, skeletal muscle contraction, myocardial contractions, maintenance of normal cellular permeability, and the formation of bones and teeth. There is a reciprocal relationship between the serum calcium concentration (normally 8.6 to 10.2 mg/dL [2.15 to 2.55 mmol/L]) and the serum phosphate concentration that is regulated by a complex interaction between parathyroid hormone, vitamin D, and calcitonin. About one-half of the serum calcium is bound to plasma proteins the other half is free ionized calcium. Given that the serum calcium has significant protein binding, the serum calcium concentration must be corrected in patients who have low albumin concentrations (the major serum protein). The most commonly used formula adds 0.8 mg/dL (0.2 mmol/L) of calcium for each gram of albumin deficiency as follows ... [Pg.413]

Sodium and potassium are used for the electrochemical transfer of signals in the nervous system. The contraction and relaxation of muscles are regulated by an interplay of calcium and... [Pg.90]

Regulation of glycogen synthesis and degradation is essentially the same in the liver and muscle, but there are a couple of wrinkles. Glycogen degradation is also activated in muscle in response to the rise in intracellular calcium levels that accompanies contraction. This is achieved by... [Pg.161]


See other pages where Calcium contraction regulation is mentioned: [Pg.287]    [Pg.5]    [Pg.176]    [Pg.466]    [Pg.75]    [Pg.83]    [Pg.201]    [Pg.8]    [Pg.212]    [Pg.287]    [Pg.79]    [Pg.127]    [Pg.280]    [Pg.584]    [Pg.127]    [Pg.141]    [Pg.606]    [Pg.47]    [Pg.1020]    [Pg.1142]    [Pg.66]    [Pg.67]    [Pg.177]    [Pg.76]    [Pg.168]    [Pg.60]    [Pg.304]    [Pg.383]    [Pg.388]    [Pg.167]    [Pg.202]    [Pg.249]    [Pg.252]    [Pg.267]    [Pg.53]    [Pg.192]    [Pg.126]    [Pg.275]   
See also in sourсe #XX -- [ Pg.221 , Pg.232 , Pg.242 , Pg.242 , Pg.259 , Pg.259 , Pg.260 , Pg.260 , Pg.261 , Pg.261 , Pg.367 , Pg.368 , Pg.369 ]




SEARCH



Calcium regulators

Calcium, regulation

© 2024 chempedia.info