Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate effect

Folk R.L. (1974) The natural history of crystalline calcium carbonate Effect of magnesium content and salinity. J. Sediment. Petrol. 44,40-53. [Pg.628]

A further important reaction is the replacementot the Ca + ion in calcium carbonate by a magnesium ion. The latter is smaller, hence space or porosity is created in the mineral lattice by the replacement. The resulting mineral is dolomite and the increase in effective porosity can be as high as 13%. The process can be expressed as... [Pg.88]

Alkaline sizing agents are especially effective in milk-carton board and printing and writing grades that utilize calcium carbonate fillers. [Pg.18]

Alkali moderation of supported precious metal catalysts reduces secondary amine formation and generation of ammonia (18). Ammonia in the reaction medium inhibits Rh, but not Ru precious metal catalyst. More secondary amine results from use of more polar protic solvents, CH OH > C2H5OH > Lithium hydroxide is the most effective alkah promoter (19), reducing secondary amine formation and hydrogenolysis. The general order of catalyst procUvity toward secondary amine formation is Pt > Pd Ru > Rh (20). Rhodium s catalyst support contribution to secondary amine formation decreases ia the order carbon > alumina > barium carbonate > barium sulfate > calcium carbonate. [Pg.209]

Nonblack fillers such as the precipitated siHcas can reduce both rate and state of cure. The mechanism appears to be one of a competitive reaction between mbber and filler for the zinc oxide activator. Use of materials such as diethylene glycol or triethanolamine prevents this competition thereby maintaining the desired cure characteristics. Neutral fillers such as calcium carbonate (whiting) and clays have Httie or no effect on the cure properties. [Pg.242]

First Carbonation. The process stream OH is raised to 3.0 with carbon dioxide. Juice is recycled either internally or in a separate vessel to provide seed for calcium carbonate growth. Retention time is 15—20 min at 80—85°C. OH of the juice purification process streams is more descriptive than pH for two reasons first, all of the important solution chemistry depends on reactions of the hydroxyl ion rather than of the hydrogen ion and second, the nature of the C0 2 U20-Ca " equiUbria results in a OH which is independent of the temperature of the solution. AH of the temperature effects on the dissociation constant of water are reflected by the pH. [Pg.26]

Obtaining maximum performance from a seawater distillation unit requires minimising the detrimental effects of scale formation. The term scale describes deposits of calcium carbonate, magnesium hydroxide, or calcium sulfate that can form ia the brine heater and the heat-recovery condensers. The carbonates and the hydroxide are conventionally called alkaline scales, and the sulfate, nonalkaline scale. The presence of bicarbonate, carbonate, and hydroxide ions, the total concentration of which is referred to as the alkalinity of the seawater, leads to the alkaline scale formation. In seawater, the bicarbonate ions decompose to carbonate and hydroxide ions, giving most of the alkalinity. [Pg.241]

The second approach, changing the environment, is a widely used, practical method of preventing corrosion. In aqueous systems, there are three ways to effect a change in environment to inhibit corrosion (/) form a protective film of calcium carbonate on the metal surface using the natural calcium and alkalinity in the water, (2) remove the corrosive oxygen from the water, either by mechanical or chemical deaeration, and (3) add corrosion inhibitors. [Pg.268]

Sa.tura.tion Index. Materials of constmction used in pools are subject to the corrosive effects of water, eg, iron and copper equipment can corrode whereas concrete and plaster can undergo dissolution, ie, etching. The corrosion rate of metallic surfaces has been shown to be a function of the concentrations of Cl ,, dissolved O2, alkalinity, and Ca hardness as well as buffer intensity, time, and the calcium carbonate saturation index (35). [Pg.300]

Table 12. Effect of Calcium Carbonate Fillers on Oxygen Permeability of Low Density Polyethylene... Table 12. Effect of Calcium Carbonate Fillers on Oxygen Permeability of Low Density Polyethylene...
Sodium C rbon te. Sodium carbonate softens water by forming insoluble calcium carbonate with calcium ions in hard water. Carbonate can also reduce calcium levels by ion pairing, although the benefit to detergency is questionable. Buildup of calcium carbonate on machine and fabrics, which can occur with time, is undesirable. Sodium carbonate [497-19-8] does not provide any suspending action. It does, however, provide alkalinity to the wash hquor and is an effective alkah. [Pg.528]

The efforts of the detergent industry toward solution of its part of the eutrophication problem are, at this point, less complete than its response to the biodegradabihty problem. Soda ash, Na2C02, sodium siUcate, and, to a lesser extent, sodium citrate formed the basis of the early formulations marketed in the areas where phosphates were harmed. Technically, these substances are considerably less effective than sodium tripolyphosphate. As a precipitant builder, soda ash can lead to undesirable deposits of calcium carbonate on textiles and on washing machines. [Pg.540]

Seawater Distillation. The principal thermal processes used to recover drinking water from seawater include multistage flash distillation, multi-effect distillation, and vapor compression distillation. In these processes, seawater is heated, and the relatively pure distillate is collected. Scale deposits, usually calcium carbonate, magnesium hydroxide, or calcium sulfate, lessen efficiency of these units. Dispersants such as poly(maleic acid) (39,40) inhibit scale formation, or at least modify it to form an easily removed powder, thus maintaining cleaner, more efficient heat-transfer surfaces. [Pg.151]

Mineral fillers are used for light-colored compounds. Talc has a small particle size and is a semireinforcing filler. It reduces air permeabihty and has htde effect on cure systems. Calcined clay is used for halobutyl stoppers in pharmaceutical appHcations. Nonreinforcing fillers, such as calcium carbonate and titanium dioxide, have large particle sizes and are added to reduce cost and viscosity. Hydrated siUcas give dry, stiff compounds, and their acidity reduces cure rate hence, their content should be minimized. [Pg.485]

Filter aids should have low bulk density to minimize settling and aid good distribution on a filter-medium surface that may not be horizontal. They should also be porous and capable of forming a porous cake to minimize flow resistance, and they must be chemically inert to the filtrate. These characteristics are all found in the two most popular commercial filter aids diatomaceous silica (also called diatomite, or diatomaceous earth), which is an almost pure silica prepared from deposits of diatom skeletons and expanded perhte, particles of puffed lava that are principally aluminum alkali siheate. Cellulosic fibers (ground wood pulp) are sometimes used when siliceous materials cannot be used but are much more compressible. The use of other less effective aids (e.g., carbon and gypsum) may be justified in special cases. Sometimes a combination or carbon and diatomaceous silica permits adsorption in addition to filter-aid performance. Various other materials, such as salt, fine sand, starch, and precipitated calcium carbonate, are employed in specific industries where they represent either waste material or inexpensive alternatives to conventional filter aids. [Pg.1708]

The crude product (Note 2) is transferred to a 2-I. flask and mixed thoroughly with 200 g. of powdered calcium carbonate. About 300 cc. of water is added and the mixture is heated cautiously (Note 3) and then refluxed for fifteen hours to effect hydrolysis. The product is then distilled in a rapid current of steam (Note 4), and the distillate is collected in soo-cc. portions, cooled, and the />-bromobenzaldehyde is collected and dried in a desiccator. From the first liter of distillate 50-60 g. of -bromo-benzaldehyde melting at 55-57° is obtained. An additional... [Pg.20]

For electrical insulation china clay is commonly employed whilst various calcium carbonates (whiting, ground limestone, precipitated calcium carbonate, and coated calcium carbonate) are used for general purpose work. Also occasionally employed are talc, light magnesium carbonate, barytes (barium sulphate) and the silicas and silicates. For flooring applications asbestos has been an important filler. The effect of fillers on some properties of plasticised PVC are shown in Figure 12.21 (a-d). [Pg.338]

Lucie, S., Kovacevic, V., Packham, D.E., Bogner, A., Gerzina, A., Stearate-modified calcium carbonate fillers and their effect on the properties of polyvinyl acetate, composites. Proc. 2nd Int. Symp. Polymer Surface Modification Relevance to Adhesion, Newark, NJ, 24-26 May, 1999. [Pg.347]

Carbonates, especially sodium and potassium carbonates, are often added to plywood and LVL mixes to accelerate cure and reduce delaminations and blows. Calcium carbonates do not show a significant accelerating effect. Occasionally esters are used to accelerate plywood mixes [119]. Carbon dioxide also accelerates PF cure [120]. [Pg.893]


See other pages where Calcium carbonate effect is mentioned: [Pg.565]    [Pg.291]    [Pg.565]    [Pg.291]    [Pg.546]    [Pg.157]    [Pg.369]    [Pg.371]    [Pg.425]    [Pg.200]    [Pg.18]    [Pg.19]    [Pg.121]    [Pg.253]    [Pg.259]    [Pg.27]    [Pg.497]    [Pg.320]    [Pg.527]    [Pg.151]    [Pg.127]    [Pg.411]    [Pg.631]    [Pg.632]    [Pg.651]    [Pg.255]    [Pg.203]    [Pg.212]   
See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Calcium carbonate

Calcium carbonate adverse effects

Calcium carbonate ionic strength effect

Calcium carbonate nanoparticles effect

Calcium carbonate nanoparticles effect strength

Calcium carbonate temperature effect

Combustion, calcium carbonate effects

© 2024 chempedia.info