Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,2-Butanediol, oxidation

Cis- and trans 3,4-thiolandiols (463 and 464) were obtained by reaction of sodium sulfide with l,4-dichloro-2,3-butanediol. Oxidation of both cyclic hydroxysulfldes gave the corresponding sulfoxides, 465 (a mixture of two stereoisomers) and 466. After esterification the sulfoxides were subjected to Pummerer rearrangement. From 465 (both stereoisomers) all-a s triester sulfide (467) was obtained. However, cyclic phenylboronate ester gave under the same conditions a trans 1-0-acetate (468). The trans diester sulfoxide 466 yielded both of the possible rearranged products, 470 and 471, in roughly equal proportions. [Pg.211]

Figure 16.2-48. Preparation of both enantiomers of 1,3-butanediol with whole cells of K. lactis and C. parapsilosis either by enantioselective oxidation of 1,3-butanediol (oxidative) or enantioselective reduction of4-hydroxybutanone (reductive). Figure 16.2-48. Preparation of both enantiomers of 1,3-butanediol with whole cells of K. lactis and C. parapsilosis either by enantioselective oxidation of 1,3-butanediol (oxidative) or enantioselective reduction of4-hydroxybutanone (reductive).
Note. Both tetramethylene glycol (1 4-butanediol) and hexamethylene glycol (1 6 hexaiiediol) may be prepared more conveniently by copper-chromium oxide reduction (Section VI,6) or, for small quantities, by reduction with lithium aluminium hydride (see Section VI,10). [Pg.251]

In a 500 ml. three-necked flask, equipped with a thermometer, a sealed Hershberg stirrer and a reflux condenser, place 32-5 g. of phosphoric oxide and add 115-5 g. (67-5 ml.) of 85 per cent, orthophosphoric acid (1). When the stirred mixture has cooled to room temperature, introduce 166 g. of potassium iodide and 22-5 g. of redistilled 1 4-butanediol (b.p. 228-230° or 133-135°/18 mm.). Heat the mixture with stirring at 100-120° for 4 hours. Cool the stirred mixture to room temperature and add 75 ml. of water and 125 ml. of ether. Separate the ethereal layer, decolourise it by shaking with 25 ml. of 10 per cent, sodium thiosulphate solution, wash with 100 ml. of cold, saturated sodium chloride solution, and dry with anhydrous magnesium sulphate. Remove the ether by flash distillation (Section 11,13 compare Fig. II, 13, 4) on a steam bath and distil the residue from a Claisen flask with fractionating side arm under diminished pressure. Collect the 1 4-diiodobutane at 110°/6 mm. the yield is 65 g. [Pg.284]

Uses. Most butynediol produced is consumed by the manufacturers in manufacture of butanediol and butenediol. Smak amounts are converted to ethers with ethylene oxide. [Pg.106]

Other processes explored, but not commercialized, include the direct nitric acid oxidation of cyclohexane to adipic acid (140—143), carbonylation of 1,4-butanediol [110-63-4] (144), and oxidation of cyclohexane with ozone [10028-15-5] (145—148) or hydrogen peroxide [7722-84-1] (149—150). Production of adipic acid as a by-product of biological reactions has been explored in recent years (151—156). [Pg.245]

An important future use for maleic anhydride is beUeved to be the production of products in the 1,4-butanediol—y-butyrolactone—tetrahydrofuran family. Davy Process Technology has commercialized a process (93) for producing 1,4-butanediol from maleic anhydride. This technology can be used to produce the product mix of the three molecules as needed by the producer. Another significant effort in this area is the tetrahydrofuran plant under constmction in Spain by Du Pont in which butane is oxidized and recovered as maleic acid and the maleic acid is then reduced to tetrahydrofuran (109). [Pg.461]

Diol Components. Ethylene glycol (ethane 1,2-diol) is made from ethylene by direct air oxidation to ethylene oxide and ring opening with water to give 1,2-diol (40) (see Glycols). Butane-1,4-diol is stiU made by the Reppe process acetylene reacts with formaldehyde in the presence of catalyst to give 2-butyne-l,4-diol which is hydrogenated to butanediol (see Acetylene-DERIVED chemicals). The ethynylation step depends on a special cuprous... [Pg.293]

Hydrogenation. Gas-phase catalytic hydrogenation of succinic anhydride yields y-butyrolactone [96-48-0] (GBL), tetrahydrofiiran [109-99-9] (THF), 1,4-butanediol (BDO), or a mixture of these products, depending on the experimental conditions. Catalysts mentioned in the Hterature include copper chromites with various additives (72), copper—zinc oxides with promoters (73—75), and mthenium (76). The same products are obtained by hquid-phase hydrogenation catalysts used include Pd with various modifiers on various carriers (77—80), Ru on C (81) or Ru complexes (82,83), Rh on C (79), Cu—Co—Mn oxides (84), Co—Ni—Re oxides (85), Cu—Ti oxides (86), Ca—Mo—Ni on diatomaceous earth (87), and Mo—Ba—Re oxides (88). Chemical reduction of succinic anhydride to GBL or THF can be performed with 2-propanol in the presence of Zr02 catalyst (89,90). [Pg.535]

Chemical Properties. The most significant chemical property of L-ascorbic acid is its reversible oxidation to dehydro-L-ascorbic acid. Dehydro-L-ascorbic acid has been prepared by uv irradiation and by oxidation with air and charcoal, halogens, ferric chloride, hydrogen peroxide, 2,6-dichlorophenolindophenol, neutral potassium permanganate, selenium oxide, and many other compounds. Dehydro-L-ascorbic acid has been reduced to L-ascorbic acid by hydrogen iodide, hydrogen sulfide, 1,4-dithiothreitol (l,4-dimercapto-2,3-butanediol), and the like (33). [Pg.13]

The presence of diacetyl at any stage of the process does not necessarily iadicate an infection by pediococci, because diacetyl is normally formed duting fermentation by oxidation of the precurser 2-acetolactate, which reaches a peak (1—1.2 ppm) at 24—36 h fermentation. The concentration of 2-acetolacetate is usually reduced to values of 0.01 ppm or less, and the diacetyl is reabsorbed by the yeast cells and en2ymatically transformed through acetoia to butanediol. It is extremely important that 2-acetolactate as diacetyl is reduced below the threshold of 0.05—0.10 ppm (ia terms of diacetyl). [Pg.25]

The oxidation reaction between butadiene and oxygen and water in the presence of CO2 or SO2 produces 1,4-butenediol. The catalysts consist of iron acetylacetonate and LiOH (99). The same reaction was also observed at 90°C with Group (VIII) transition metals such as Pd in the presence of I2 or iodides (100). The butenediol can then be hydrogenated to butanediol [110-63-4]. In the presence of copper compounds and at pH 2, hydrogenation leads to furan (101). [Pg.343]

Alternatively, butadiene can be oxidized in the presence of acetic acid to produce butenediol diacetate, a precursor to butanediol. The latter process has been commercialized (102—104). This reaction is performed in the Hquid phase at 80°C with a Pd—Te—C catalyst. A different catalyst system based on PdCl2(NCCgH )2 has been reported (105). Copper- (106) and rhodium- (107) based catalysts have also been studied. [Pg.343]

Another butadiene oxidation process to produce butanediol is based on the 1,4-addition of /-butyl hydroperoxide to butadiene (108). Cobalt on siHca catalyzes the first step. This is followed by hydrogenation of the resulting olefinic diperoxide to produce butanediol and /-butyl alcohol. [Pg.343]

Polymerization of castor od, chemical or oxidative, results in higher viscosity or bodied ods that are more usehd in urethane coatings than the untreated castor od (87). Other castor derivatives used to prepare urethanes are amides prepared by reaction of castor od and alkanolamines, amides of ricinoleic acid with long-chain di- and triamines, and butanediol diricinoleate (88,89). [Pg.156]

Manufacturing. Almost all the THE in the United States is currendy produced by the acid-catalyzed dehydration of 1,4-butanediol [10-63-4]. Only one plant in the United States still makes THE by the hydrogenation of furfural (29). Du Pont recendy claimed a new low cost process for producing THE from / -butane that they plan to commercialize in 1995 (30—32). The new process transport-bed oxidizes / -butane to cmde maleic anhydride, then follows with a hydrogen reduction of aqueous maleic acid to THE (30). [Pg.429]

Literature articles, which report the formation and evaluation of difunctional cyanoacrylate monomers, have been published. The preparation of the difunctional monomers required an alternative synthetic method than the standard Knoevenagel reaction for the monofunctional monomers, because the crosslinked polymer thermally decomposes before it can revert back to the free monomer. The earliest report for the preparation of a difunctional cyanoacrylate monomer involved a reverse Diels-Alder reaction of a dicyanoacrylate precursor [16,17]. Later reports described a transesterification with a dicyanoacrylic acid [18] or their formation from the oxidation of a diphenylselenide precursor, seen in Eq. 3 for the dicyanoacrylate ester of butanediol, 7 [6]. [Pg.851]

Oxidation of n-hutane to maleic anhydride is becoming a major source for this important chemical. Maleic anhydride could also be produced by the catalytic oxidation of n-butenes (Chapter 9) and benzene (Chapter 10). The principal use of maleic anhydride is in the synthesis of unsaturated polyester resins. These resins are used to fabricate glass-fiber reinforced materials. Other uses include fumaric acid, alkyd resins, and pesticides. Maleic acid esters are important plasticizers and lubricants. Maleic anhydride could also be a precursor for 1,4-butanediol (Chapter 9). [Pg.177]

Molded urethanes are used in items such as bumpers, steering wheels, instrument panels, and body panels. Elastomers from polyurethanes are characterized by toughness and resistance to oils, oxidation, and abrasion. They are produced using short-chain polyols such as polytetram-ethylene glycol from 1,4-butanediol. Polyurethanes are also used to produce fibers. Spandex (trade name) is a copolymer of polyurethane (85%) and polyesters. [Pg.344]

The most important reaction is the oxidative addition of two moles of acetic acid to butadiene to form 1,4-diacetoxy-2-butene (21) with the reduction of Pd2+ to Pd°. In this reaction, 3,4-diacetoxy-l-butene (127) is also formed. In order to carry out the reaction catalytic with regard to Pd2+, a redox system is used. This reaction attracts attention from the standpoint of industrial production of 1,4-butanediol. For this purpose, the formation of 127 should be minimized. Numerous patent applications have been made (examples 113-115), but no paper treating the systematic studies on the reaction has been published. [Pg.181]

Geminox A direct process for converting butane to 1,4-butanediol. The butane is first oxidized in the gas phase to maleic anhydride, using BP s fluidized bed technology. The maleic anhydride is scrubbed with water and then catalytically dehydrogenated to butanediol. Developed in 1994 by BP Chemicals and Lurgi. Modifications of the process can be used to make tetrahydrofiuan and y-butyrolactone. The first plant will probably be built on BP s site at Lima, OH, for completion in 2000. [Pg.114]


See other pages where 1,2-Butanediol, oxidation is mentioned: [Pg.113]    [Pg.113]    [Pg.241]    [Pg.400]    [Pg.302]    [Pg.459]    [Pg.455]    [Pg.294]    [Pg.304]    [Pg.304]    [Pg.313]    [Pg.75]    [Pg.134]    [Pg.538]    [Pg.341]    [Pg.920]    [Pg.249]    [Pg.66]    [Pg.138]    [Pg.140]    [Pg.75]    [Pg.31]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



1 : 4-Butanediol

1,4-butanediole

2.3- Butanediol oxidative cleavage

Butanediols

© 2024 chempedia.info