Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butadiene monomers, physical properties

In polymers that exhibit tacticity, the extent of the stereoregularity determines the crystallinity and the physical properties of the polymers. The placement of the monomer units in the polymer is controlled first by the steric and electronic characteristics of the monomer. However, the presence or absence of tacticity, as well as the type of tacticity, is controlled by the catalyst employed in the polymerization reaction. Some common polymers, which can be prepared in specific configuration, include poly(olefins), poly(styrene), poly(methyl methacrylate), and poly(butadiene). [Pg.86]

The hydrogenation of the centre block of SBS copolymer produced oxidation stable thermoplastic elastomer. This product was commercialized by the Shell Development Company under the trade name of Kraton G. The field of thermoplastic elastomers based on styrene, 1-3-butadiene or isoprene has expanded so much in the last 10 years that the synthetic rubber chemist produced more of these polymers than the market could handle. However, the anionically prepared thermoplastic system is still the leader in this field, since it produced the best TPR s with the best physical properties. These TPR s can accommodate more filler, which reduces the cost. For example, the SBS Kraton type copolymer varies the monomer of the middle block to produce polyisoprene at various combinations, then, followed... [Pg.418]

The polymers described above have been chemically pure, although physically helerodisperse. It is oflen possible lo combine two or more of these monomers in the same molecule to form a copolymer. This process produces still further modification of molecular properties and, in turn, modification of the physical properties of file product. Many commercial polymers are copolymers because of the blending of properties achieved in this way. For example, one of the important new polymers of the past ten years has been the family of copolymers of acrylonitrile, butadiene and styrene, commonly called ABS resins. The production of these materials has grown rapidly in a short period of time because of their combination of dimensional stability and high impact resistance. These properties are related to the impact resistance of acrylonitrile-butadiene rubber and the dimensional stability of polystyrene, which are joined in the same molecule. [Pg.1350]

Papers concerning the physical properties of polymers as the guest components in urea inclusion compounds and polymerization reactions of guest monomer molecules within the urea tunnel structure have been reviewed elsewhere. The polymers studied included poly (ethylene), poly (acrylonitrile), poly (1,3-butadiene), poly(eth-ylene oxide), poly(tetrahydrofiiran), poly(acrolein), poly(vinyl chloride), poly(ethyl acrylate), poly(lactide), poIy(lactic acid), poly(ethylene adipate). poly(ethylene succinate), acrylonitrile-ethyl acrylate copolymer, and poly(hexanediol di acrylate). [Pg.1544]

Emulsion polymerization requires free-radical polymerizable monomers which form the structure of the polymer. The major monomers used in emulsion polymerization include butadiene, styrene, acrylonitrile, acrylate ester and methacrylate ester monomers, vinyl acetate, acrylic acid and methacrylic acid, and vinyl chloride. All these monomers have a different stmcture and, chemical and physical properties which can be considerable influence on the course of emulsion polymerization. The first classification of emulsion polymerization process is done with respect to the nature of monomers studied up to that time. This classification is based on data for the different solubilities of monomers in water and for the different initial rates of polymerization caused by the monomer solubilities in water. According to this classification, monomers are divided into three groups. The first group includes monomers which have good solubility in water such as acrylonitrile (solubility in water 8%). The second group includes monomers having 1-3 % solubility in water (methyl methacrylate and other acrylates). The third group includes monomers practically insoluble in water (butadiene, isoprene, styrene, vinyl chloride, etc.) [12]. [Pg.39]

This paper reports on the synthesis, characterisation, and applications of novel flame retardant dibromostyrene-based latexes. They are copolymers of dibromostyrene with butadiene, alkyl acrylates and methacrylates, vinyl acetate, styrene and unsaturated carboxylic acids, which form a wide variety of flame retardant latexes via an emulsion polymerisation technique. Choice of monomer or monomer blend is based upon the final glass transition temperature of the copolymer desired. Other criteria include desired physical properties and chemical resistance. Dibromostyrene-based butadiene and acryUc latexes are shown to possess the desired physical properties for use in coatings, adhesives and sealants, and the bromine content of the latexes has enabled the material to pass six different flammability requirements for the end uses such as textile backcoating, latex-based paint, contact adhesive, latex sealant, nonwoven binder, and carpet backing. 18 refs. [Pg.127]

The natural rubber does not generally exhibit all the desired properties for use in the rubber industry. Thus, it is possible to obtain better mechanical and physical properties at a lower cost by blending natural rubber with synthetic rubbers. Normally, natural rubber is deteriorated by ozone and thermal attacks due to its highly unsaturated backbone, and it also shows low oil and chemical resistances due to its non-polarity. However, these properties can be achieved by blending it with low unsaturated ethylene propylene diene monomer rubber, styrene butadiene rubber, carboxylate styrene butadiene rubber, nitrile butadiene rubber, chloroprene rubber, chlorosulfonated polyethylene rubber, and acrylonitrile butadiene rubber. [Pg.514]

Polymerization depends primarily on the chemical and physical properties of monomer. First, the monomer must be sufficiently reactive for radical polymerization. Vinyl acetate failed to polymerize during mastication as a result of the apparent low reactivity of alkyl radicals toward this monomer [86, 88], whereas isoprene, vinyl chloride, and butadiene also had only a low reactivity [88, 95], It has been claimed that results with vinyl acetate result from traces of impurities including oxygen [98]. Gelation occurs on mastication with monomers, which give radicals sufficiently active to react with low-activity groups in natural rubber. The effect of monomer composition... [Pg.201]

As noted in Chapter 2, there exists stereogeometry and stereoregularity in polymers. These differences have profound effects on the physical and, to a lesser degree, chemical properties of the polymers produced from the same monomer. There are three possible units that can be formed from the polymerization of butadiene as shown in structure 5.47. [Pg.148]

Wallace Carothers will be the subject of one of our Polymer Milestones when we discuss nylon in Chapter 3. Among his many accomplishments in the late 1920s and early 1930s, Carothers and his coworkers made a major contribution to the discovery and eventual production of the synthetic rubber, polychloroprene. It was synthesized from the diene monomer, chloroprene, CH2=CCI-CH=CHr Chloroprene, which is a very reactive monomer—it spontaneously polymerizes in the absence of inhibitors— was a product of some classic studies on acetylene chemistry performed by Carothers and coworkers at that time. In common with butadiene and iso-prene, in free radical polymerization chloroprene is incorporated into the growing chain as a number of different structural isomers. Elastomeric materials having very different physical and mechanical properties can be made by simply varying the polym-... [Pg.38]

Acrylonitrile/Butadiene/Styrene (ABS) Acry-lonitrile/butadiene/styrene (ABS) polymers are not true terpolymers. As HIPS they are multipolymer composite materials, also called polyblends. Continuous ABS is made by the copolymerization of styrene and acrylonitrile (SAN) in the presence of dissolved PB rubber. It is common to make further physical blends of ABS with different amounts of SAN copolymers to tailor product properties. Similar to the bulk continuous HIPS process, in the ABS process, high di-PB (>50%, >85% 1,4-addition) is dissolved in styrene monomer, or in the process solvent, and fed continuously to a CSTR where streams of AN monomer, recycled S/AN blends from the evaporator and separation stages, peroxide or azo initiators, antioxidants and additives are continuously metered according to the required mass balance to keep the copolymer composition constant over time at steady state. [Pg.278]

Acrylonitrile-butadiene-styrene (ABS) copolymers are produced by three monomers acrylonitrile, butadiene, and styrene. The desired physical and chemical properties of ABS polymers with a wide range of functional characteristics can be controlled by changing the ratio of these monomers. They are resistant... [Pg.641]


See other pages where Butadiene monomers, physical properties is mentioned: [Pg.111]    [Pg.533]    [Pg.464]    [Pg.921]    [Pg.416]    [Pg.397]    [Pg.530]    [Pg.229]    [Pg.2617]    [Pg.401]    [Pg.549]    [Pg.2520]    [Pg.9]    [Pg.881]    [Pg.1019]    [Pg.17]    [Pg.190]    [Pg.23]    [Pg.941]    [Pg.127]    [Pg.629]    [Pg.16]    [Pg.701]    [Pg.25]    [Pg.562]    [Pg.549]    [Pg.143]    [Pg.143]    [Pg.535]    [Pg.516]    [Pg.353]    [Pg.198]    [Pg.5]    [Pg.519]   


SEARCH



Butadiene, properties

Monomers physical properties

© 2024 chempedia.info