Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron trifluoride, and

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

Boron trifluoride method. Fit a 1 litre three-necked flask with a gas inlet tube, a gas outlet leading to an alkali trap (compare Fig. 11,8, laori for the unabsorbed boron trifluoride), and stopper the third neck. Place 68 g. (73 ml.) of pure, anhydrous acetone (1) and 255 g. (236 ml.) of A.R. acetic anhydride in the flask and cool in a freezing mixture of ice and salt. Connect the gas inlet tube through an empty wash bottle to a cylinder of commercial boron trifluoride (2), and bubble the gas through the reaction mixture at such a rate that 250 g. is absorb in about 5 hours (2 bubbles per second). Pour the reaction mixture into a solution... [Pg.862]

Cations like that present in (iv) exist in solutions of aromatic hydrocarbons in trifluoroacetic acid containing boron trifluoride, and in liquid hydrogen fluoride containing boron trifluoride. Sulphuric acid is able to protonate anthracene at a mero-position to give a similar cation. ... [Pg.113]

The cr-complexes (iv) are thus the intermediates corresponding to the substitution process of hydrogen exchange. Those for some other substitutions have also been isolated in particular, benzylidyne trifluoride reacts with nitryl fluoride and boron trifluoride at — ioo°C to give a yellow complex. Above — 50 °C the latter decomposes to hydrogen fluoride, boron trifluoride, and an almost quantitative yield of tn-nitrobenzylidyne trifluoride. The latter is the normal product of nitrating benzylidyne trifluoride, and the complex is formulated as... [Pg.114]

In addition, boron trifluoride and some of its adducts have widespread appflcation as curing agents for epoxy resins (qv), and in preparing alcohol-soluble phenoflc resins (qv) (41). [Pg.162]

Cationic polymerization of coal-tar fractions has been commercially achieved through the use of strong protic acids, as well as various Lewis acids. Sulfuric acid was the first polymerization catalyst (11). More recent technology has focused on the Friedel-Crafts polymerization of coal fractions to yield resins with higher softening points and better color. Typical Lewis acid catalysts used in these processes are aluminum chloride, boron trifluoride, and various boron trifluoride complexes (12). Cmde feedstocks typically contain 25—75% reactive components and may be refined prior to polymerization (eg, acid or alkali treatment) to remove sulfur and other undesired components. Table 1 illustrates the typical components found in coal-tar fractions and their corresponding properties. [Pg.351]

Catalysts used in the polymerization of C-5 diolefins and olefins, and monovinyl aromatic monomers, foUow closely with the systems used in the synthesis of aHphatic resins. Typical catalyst systems are AlCl, AIBr., AlCl —HCl—o-xylene complexes and sludges obtained from the Friedel-Crafts alkylation of benzene. Boron trifluoride and its complexes, as weU as TiCl and SnCl, have been found to result in lower yields and higher oligomer content in C-5 and aromatic modified C-5 polymerizations. [Pg.354]

Complexes of boron trifluoride and amines such as monoethylamine are of interest because of the very long pot lives possible. The disadvantages of these complexes are their hygroscopic nature and the corrosive effects of BF3 liberated during cure. [Pg.761]

Neutral compounds such as boron trifluoride and aluminum chloride form Lewis acid-base complexes by accepting an electron pair from the donor molecule. The same functional groups that act as lone-pair donors to metal cations can form complexes with boron trifluoride, aluminum chloride, and related compounds. [Pg.234]

Table 3. Synthesis of ort/io-Substituted Fluoroaromatics from Nitrite Esters, Boron Trifluoride, and Hydrogen Fluoride [26]... Table 3. Synthesis of ort/io-Substituted Fluoroaromatics from Nitrite Esters, Boron Trifluoride, and Hydrogen Fluoride [26]...
Write an equation for the Lewis acid-Lewis base reaction between boron trifluoride and dimethyl sulfide [(0)3)25]. Use curved arrows to track the flow of electrons and show formal charges if present. [Pg.46]

As catalysts for the Fries rearrangement reaction are for example used aluminum halides, zinc chloride, titanium tetrachloride, boron trifluoride and trifluoromethanesulfonic acid7... [Pg.129]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

Mechanistically there is ample evidence that the Balz-Schiemann reaction is heterolytic. This is shown by arylation trapping experiments. The added arene substrates are found to be arylated in isomer ratios which are typical for an electrophilic aromatic substitution by the aryl cation and not for a homolytic substitution by the aryl radical (Makarova et al., 1958). Swain and Rogers (1975) showed that the reaction takes place in the ion pair with the tetrafluoroborate, and not, as one might imagine, with a fluoride ion originating from the dissociation of the tetrafluoroborate into boron trifluoride and fluoride ions. This is demonstrated by the insensitivity of the ratio of products ArF/ArCl in methylene chloride solution at 25 °C to excess BF3 concentration. [Pg.228]

On the theoretical side, study of the dissociation of addition compounds of amines with trimethylborane, boron trifluoride, and borane provide a new quantitative approach to steric strains. These studies quickly removed doubts as to the importance of steric effects in chemical behavior. [Pg.17]

C21-0097. Construct a table of bond lengths that supports the existence of 7r bonding in boron trifluoride and boric acid. The relevant data can be found in the text. Label your table thoroughly. [Pg.1552]

The methylamine adduct of boron trifluoride and phosphorus pentachloride gives a zwitterionic product (11) which may also be formulated as a monophosphazene (12) ... [Pg.195]

Two pieces of direct evidence support the manifestly plausible view that these polymerizations are propagated through the action of car-bonium ion centers. Eley and Richards have shown that triphenyl-methyl chloride is a catalyst for the polymerization of vinyl ethers in m-cresol, in which the catalyst ionizes to yield the triphenylcarbonium ion (C6H5)3C+. Secondly, A. G. Evans and Hamann showed that l,l -diphenylethylene develops an absorption band at 4340 A in the presence of boron trifluoride (and adventitious moisture) or of stannic chloride and hydrogen chloride. This band is characteristic of both the triphenylcarbonium ion and the diphenylmethylcarbonium ion. While similar observations on polymerizable monomers are precluded by intervention of polymerization before a sufficient concentration may be reached, similar ions should certainly be expected to form under the same conditions in styrene, and in certain other monomers also. In analogy with free radical polymerizations, the essential chain-propagating step may therefore be assumed to consist in the addition of monomer to a carbonium ion... [Pg.219]

The interaction between nitromethane, the etherate of boron trifluoride and silver oxide gives rise to an extremely dangerous reaction. However, it is difficult to interpret it. Can it be explained by the unstable property of silver tetrafluoroborate or the destabilising effect of boron trifluoride on nitromethane ... [Pg.299]

Although all molecules are in constant thermal motion, when all of their atoms are at their equilibrium positions, a specific geometrical structure can usually be assigned to a given molecule. In this sense these molecules are said to be rigid. The first step in the analysis of the structure of a molecule is the determination of the group of operations that characterizes its symmetry. Each symmetry operation (aside from the trivial one, E) is associated with an element of symmetry. Thus for example, certain molecules are said to be planar. Well known examples are water, boron trifluoride and benzene, whose structures can be drawn on paper in the forms shown in Fig. 1. [Pg.309]

Homogeneous catalysts are also often used in cationic and anionic polymerization processes. Lewis acid catalysts, such as boron trifluoride and stannic chloride, accept protons from co-... [Pg.86]

A carbonyl-ene reaction between a variety of a-methyl styrenes and paraformaldehyde was effected using the combined boron trifluoride and 4 A molecular sieves (Equation (5)). The reaction worked best when electron-withdrawing groups (Cl or F) were present on the aromatic ring. [Pg.559]

Nitrones, reaction with olefins, 46, 130 Nitronium tetrafluoroborate, from nitric add, boron trifluoride, and hydrogen fluoride, 47, 56 in nitration of aromatic rings, 47, 60... [Pg.78]

Finally, intramolecular Michael addition from a 3-(2-oxo-but-3-enyl)-oxazolidin-5-one was reported to be catalyzed by boron trifluoride and afforded the cyclized product in fair yields. However, substitution at the enone group resulted in a less efficient cyclization <1996TL14757>. [Pg.455]

H. S. Booth and D. R. Martin, Boron Trifluoride and its Derivatives 1949 (New York J. Wiley and Sons Inc. London Chapman and Hall). [Pg.244]

It is worth recalling that the phenomenon of co-catalysis (now more consistently renamed co-initiation ) was found first with boron trifluoride and with the tetrahalides of titanium and tin. It is well known that it can be interpreted by the reaction scheme (1)... [Pg.266]

Thermolysis of 219a and 219b produced the benzofulvenes 221 as expected. However, the formation of 222 from 219c can best be accounted for by regarding the biradical 220a as the carbene 220b to allow an intramolecular C-H insertion reaction. The presence of a carbonyl group in 219 also permits the use of samarium(II) iodide, samarium(III) chloride, boron trifluoride and trifluoroacetic acid to promote the Schmittel cyclization reaction. [Pg.1118]

Diketones are produced from nitroalkenes and the lithium enolates of ketones. Equation 132 shows the reaction of the enolate of 2-hexanone with 2-nitropropene in the presence of acetic anhydride. The resulting betaine 409, a greenish-blue liquid, is hydrolysed to the diketone by successive treatment with boron trifluoride and water441. [Pg.611]

The present procedure is an improved modification of that described by Balaban for the corresponding perchlorate. 2,4,6-Triphenylpyrylium tetrafluoroborate has also been prepared from the corresponding tetrachloroferrate with fiuoboric acid, from acetophenone and boron trifluoride, and from acetophenone, benzaldehyde, and boron trifluoride etherate. Additional methods for the preparation of pyrylium salts have been reviewed. ... [Pg.144]


See other pages where Boron trifluoride, and is mentioned: [Pg.232]    [Pg.194]    [Pg.293]    [Pg.355]    [Pg.496]    [Pg.135]    [Pg.274]    [Pg.876]    [Pg.896]    [Pg.241]    [Pg.478]    [Pg.25]    [Pg.19]    [Pg.226]    [Pg.84]    [Pg.80]    [Pg.4]    [Pg.32]   


SEARCH



2.4- Cyclohexadienones from polyalkylarenes with peroxytrifluoroacetic acid and boron trifluoride

Boron Trifluoride and Tetrafluoroboric Acid

Boron trifluoride

Boron trifluoride, with dimethyl ether and epichlorohydrin to give trimethyloxonium tetrafluoroborate

Boron, Nitrogen and Chlorine Trifluorides

Dimethyl ether, with boron trifluoride diethyl etherate and epichlorohydrin to give trimethyloxonium

Durene, oxidation with peroxytrifluoroacetic acid and boron trifluoride

Hexaethylbenzene, oxidation with peroxytrifluoroacetic acid and boron trifluoride

Isodurene, oxidation with peroxytrifluoroacetic acid and boron trifluoride

With boron trifluoride diethyl etherate and dimethyl

© 2024 chempedia.info