Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl cation

Primary arylamines like primary alkylammes form diazonium ion salts on nitro sation Aryl diazonium 10ns are considerably more stable than their alkyl counterparts Whereas alkyl diazonium 10ns decompose under the conditions of their formation aryl diazonium salts are stable enough to be stored m aqueous solution at 0-5°C for a rea sonable time Loss of nitrogen from an aryl diazonium ion generates an unstable aryl cation and is much slower than loss of nitrogen from an alkyl diazonium ion... [Pg.945]

This IS the most general method for preparing phenols It is easily performed the aque ous acidic solution m which the diazonium salt is prepared is heated and gives the phe nol directly An aryl cation is probably generated which is then captured by water acting as a nucleophile... [Pg.946]

Treatment of aniline 1 with nitric acid in the presence of tetrafluoroboric acid leads to a relatively stable benzenediazonium tetrafluoroborate 2 by the usual diazotization mechanism. There are several variants for the experimental procedure. Subsequent thermal decomposition generates an aryl cation species 4, which reacts with fluoroborate anion to yield fluorobenzene 3 " ... [Pg.250]

How- does this reaction take place Although it appears superficially similar to the SN1 and S 2 nucleophilic substitution reactions of alkyl halides discussed in Chapter 11, it must be different because aryl halides are inert to both SN1 and Sj 2 conditions. S l reactions don t occur wdth aryl halides because dissociation of the halide is energetically unfavorable due to tire instability of the potential aryl cation product. S]sj2 reactions don t occur with aryl halides because the halo-substituted carbon of the aromatic ring is sterically shielded from backside approach. For a nucleophile to react with an aryl halide, it would have to approach directly through the aromatic ring and invert the stereochemistry of the aromatic ring carbon—a geometric impossibility. [Pg.572]

Dissociation reaction does not occur because the aryl cation is unstable therefore, no SN1 reaction. [Pg.573]

Aromatic diazonium salts are almost as important for reactions in which the diazonio group is lost as molecular nitrogen and in which aryl cations and radicals are the reagent proper (dediazoniation reactions, see Chs. 8 and 10). [Pg.4]

The reaction of molecular nitrogen with aryl cations, i. e., the reverse reaction of (heterolytic) dediazoniations of arenediazonium ions, is a direct introduction of the... [Pg.37]

The experimental work of the groups of Swain and Zollinger on the dediazoniation mechanism of arenediazonium ions, which started in 1975, provided good evidence for the existence of aryl cations as steady state intermediates (see Sec. 8.3). These results also initiated theoretical work on aryl cations, in part combined with further calculations on the structure and reactivity of arenediazonium ions. Publications that contain data on arenediazonium ions and aryl cations will therefore be discussed in the chapter on dediazoniation reactions (Sec. 8.4). In the rest of this section we will concentrate on investigations that are concerned with the geometries and electron densities of diazonium ions but not, or only marginally, with energetics of the dediazoniation reaction. [Pg.86]

Simple mechanistic considerations easily explain why heterolytic dissociation of the C — N bond in a diazonium ion is likely to occur, as a nitrogen molecule is already preformed in a diazonium ion. On the other hand, homolytic dissociation of the C —N bond is very unlikely from an energetic point of view. In heterolysis N2, a very stable product, is formed in addition to the aryl cation (8.1), which is a metastable intermediate, whereas in homolysis two metastable primary products, the aryl radical (8.2) and the dinitrogen radical cation (8.3) would be formed. This event is unlikely indeed, and as discussed in Section 8.6, homolytic dediazoniation does not proceed by simple homolysis of a diazonium ion. [Pg.164]

In a classic study in 1940, Crossley and coworkers demonstrated that the rates of nucleophilic substitution of the diazonio group of the arenediazonium ion in acidic aqueous solution were independent of the nucleophile concentration, and that these rates were identical with the rate of hydrolysis. Since that time it has therefore been accepted without question that these reactions proceed by a DN + AN mechanism, i.e., that they consist of a rate-determining irreversible dissociation of the diazonium ion into an aryl cation and nitrogen followed by rapid reactions of the cation with water or other nucleophiles present in solution (Scheme 8-6). [Pg.166]

However, measurements of substituent effects supported the hypothesis that the aryl cation is a key intermediate in dediazoniations, provided that they were interpreted in an appropriate way (Zollinger, 1973a Ehrenson et al., 1973 Swain et al., 1975 a). We will first consider the activation energy and then discuss the influence of substituents, as well as additional data concerning the aryl cation as a metastable intermediate (kinetic isotope effects, influence of water acitivity in hydroxy-de-di-azoniations). Finally, the cases of dediazoniation in which the rate of reaction is first-order with regard to the concentration of the nucleophile will be critically evaluated. [Pg.167]

Fig. 8-3. HOMO-LUMO interac-tions between N2 and an aryl cation (Zollinger, 1990). Fig. 8-3. HOMO-LUMO interac-tions between N2 and an aryl cation (Zollinger, 1990).
Thus the DSP treatment provides a reasonable interpretation of substituent effects on the basis of the DN + AN mechanism, i. e., rate-limiting formation of an aryl cation in aromatic dediazoniations, but not on the basis of a bimolecular mechanism. [Pg.169]

Important additional evidence for aryl cations as intermediates comes from primary nitrogen and secondary deuterium isotope effects, investigated by Loudon et al. (1973) and by Swain et al. (1975 b, 1975 c). The kinetic isotope effect kH/ki5 measured in the dediazoniation of C6H515N = N in 1% aqueous H2S04 at 25 °C is 1.038, close to the calculated value (1.040-1.045) expected for complete C-N bond cleavage in the transition state. It should be mentioned, however, that a partial or almost complete cleavage of the C — N bond, and therefore a nitrogen isotope effect, is also to be expected for an ANDN-like mechanism, but not for an AN + DN mechanism. [Pg.169]

Scaiano and Kim-Thuan (1983) searched without success for the electronic spectrum of the phenyl cation using laser techniques. Ambroz et al. (1980) photolysed solutions of three arenediazonium salts in a glass matrix of 3 M LiCl in 1 1 (v/v) water/acetone at 77 K. With 2,4,5-trimethoxybenzenediazonium hexafluorophos-phate Ambroz et al. observed two relatively weak absorption bands at 415 and 442 nm (no e-values given) and a reduction in the intensity of the 370 nm band of the diazonium ion. The absence of any ESR signals indicates that these new bands are not due to aryl radicals, but to the aryl cation in its triplet ground state. [Pg.170]

All these results are consistent with the hypothesis that aryl cations react in aqueous media at diffusion-controlled rates with all nucleophiles that are available in the immediate neighbourhood of the diazonium ion. On this basis Romsted and coworkers (Chaudhuri et al., 1993a, 1993b) used dediazoniation reactions as probes of the interfacial composition of association colloids. These authors determined product yields from dediazoniation of two arenediazonium tetrafluoroborates containing ft-hexadecyl residues (8.15 and 8.16) and the corresponding diazonium salts with methyl groups instead of Ci6H33 chains. ... [Pg.173]

Addition of hexafluorophosphate salts reduces the dediazoniation rate of 4-me-thylbenzenediazonium tetrafluoroborate in TFE/H20 (1 1) (Maskill and McCrud-den, 1992). However, as the concentration of these salts (0.12 — 0.23 M) does not affect the rate, it is evident that these salts are intercepting one of the intermediates, i.e., either the ion-molecule pair or the aryl cation. [Pg.174]

Molecular Orbital Investigations on Heterolytic Dediazoniations and on Aryl Cations... [Pg.177]

As mentioned at the end of Section 8.3, the MO investigation by Apeloig and Arad (1985) of the influence of trimethylsilyl substituents on the phenyl cation led to the discovery of a further reagent, in addition to arenediazonium ions, that is able to form aryl cations, namely 2,6-bis-(trimethylsilyl)phenyltriflate. This was a significant success in the field of predictions on aryl cations by theoretical work. [Pg.177]

We will conclude this section on theory with such a case. In Section 8.3 it was shown that the influence of substituents on the rate of dediazoniation of arenediazonium ions can be treated by dual substituent parameter (DSP) methods, and that kinetic evidence is consistent with a side-on addition of N2. We will now discuss these experimental conclusion with the help of schematic orbital correlation diagrams for the diazonium ion, the aryl cation, and the side-on ion-molecule pair (Fig. 8-5, from Zollinger, 1990). We use the same orbital classification as Vincent and Radom (1978) (C2v symmetry). [Pg.182]

For the approach of N2 in the xy-plane of the aryl ring, i. e., side-on addition, o-electron withdrawal by substituents will increase the ai-a interaction. A positive constant pF is therefore expected for addition to 4-substituted aryl cations. 7i-Elec-tron donation by substituents will increase the b2-b2 interaction, for which a negative value of the constant pR is plausible. For the approach of N2 along the z-axis, i.e., end-on addition, the ai-ai interaction should be at least as strong as for the side-on reaction as substantial positive value of pF is therefore expected. The b2-b2 interactions should approximatively cancel. Interactions between the two occupied orbitals should lead to a slight destabilization, but interaction with n should reduce the importance of the b2-b2 interaction relative to the ai-ai interaction, i.e., Pr < Pf -... [Pg.182]

In Section 8.3 the mechanism of heterolytic dediazoniation of arenediazonium ions was discussed, and it was shown that the hypothesis of Crossley et al. (1940) that the aryl cation is the characteristic metastable intermediate in those reactions was not consistent with some experimental facts found in 1952 by Lewis and Hinds. Nevertheless, these facts did not have significant influence on the scientific community, which continued to accept the original and apparently convincing hypothesis of the rate-limiting formation of an aryl cation as an intermediate as correct . The incom-patabilities of various mechanistic hypotheses with experimental facts were, however, discussed in some detail only two decades later (Zollinger, 1973 a). Another year passed before I performed a crucial experiment that refuted a number of hypotheses (Bergstrom et al., 1974, 1976). ... [Pg.213]

I will now discuss the development of the elucidation of the dediazoniation mechanism in terms of Kuhn s cycle normal science -> crisis -> revolution -> normal science . After Crossley et al. postulated the aryl cation as key intermediate of dediazoniation in 1940 and the strong support given to that hypothesis in Hammett s book Physical Organic Chemistry (1940), work in the area of dediazoniation... [Pg.215]

Mechanistically there is ample evidence that the Balz-Schiemann reaction is heterolytic. This is shown by arylation trapping experiments. The added arene substrates are found to be arylated in isomer ratios which are typical for an electrophilic aromatic substitution by the aryl cation and not for a homolytic substitution by the aryl radical (Makarova et al., 1958). Swain and Rogers (1975) showed that the reaction takes place in the ion pair with the tetrafluoroborate, and not, as one might imagine, with a fluoride ion originating from the dissociation of the tetrafluoroborate into boron trifluoride and fluoride ions. This is demonstrated by the insensitivity of the ratio of products ArF/ArCl in methylene chloride solution at 25 °C to excess BF3 concentration. [Pg.228]

An interesting observation (Becker and Israel, 1979) is that the photochemical de-diazoniation gives the same product ratio as the thermal reaction in a given solvent. Therefore both types of reaction probably proceed via the same intermediate, i. e., the aryl cation (see Sec. 10.13). [Pg.229]

A number of approaches have been tried for modified halo-de-diazoniations using l-aryl-3,3-dialkyltriazenes, which form diazonium ions in an acid-catalyzed hydrolysis (see Sec. 13.4). Treatment of such triazenes with trimethylsilyl halides in acetonitrile at 60 °C resulted in the rapid evolution of nitrogen and in the formation of aryl halides (Ku and Barrio, 1981) without an electron transfer reagent or another catalyst. Yields with silyl bromide and with silyl iodide were 60-95%. The authors explain the reaction as shown in (Scheme 10-30). The formation of the intermediate is indicated by higher yields if electron-withdrawing substituents (X = CN, COCH3) are present. In the opinion of the present author, it is likely that the dissociation of this intermediate is not a concerted reaction, but that the dissociation of the A-aryl bond to form an aryl cation is followed by the addition of the halide. The reaction is therefore mechanistically not related to the homolytic halo-de-diazoniations. [Pg.238]

The proximity of the reaction centre to the second phenyl ring makes the aryl cation, formed by heterolytic dediazoniation, a serious competitor to the aryl radical. This is evident in Table 10-6 from various examples where the yield obtained in aqueous mineral acid (varying from 0.1 m to 50% H2S04) is higher than in the presence of an electron-transfer reagent. This competition was studied in three types of product analyses by Cohen s group (Lewin and Cohen, 1967 Cohen et al., 1977), by Huisgen and Zahler (1963 a, 1963 b), and by Bolton et al. (1986). [Pg.264]

The sum of all results is consistent with the formation of both the aryl cation and the aryl radical in the aqueous acid system without copper, and with the dominance of the aryl radical in the presence of copper. The product ratios are also qualitatively consistent with the hypothesis that the reactivity of aryl cations with nucleophiles is close to that of a diffusion-controlled process (see Sec. 8.3), and that aryl radicals have arylation rate constants that are about two orders of magnitude smaller than that for diffusion control (0.4-1.7 X 107 m-1s-1 Kryger et al., 1977 Scaiano and Stewart, 1983). Due to the relatively low yields of these dediazoniations in the pentyl nitrite/benzene systems, no conclusions should be drawn from the results. [Pg.267]


See other pages where Aryl cation is mentioned: [Pg.975]    [Pg.149]    [Pg.941]    [Pg.74]    [Pg.82]    [Pg.123]    [Pg.163]    [Pg.170]    [Pg.170]    [Pg.171]    [Pg.172]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.176]    [Pg.180]    [Pg.200]    [Pg.221]    [Pg.256]    [Pg.259]    [Pg.278]   
See also in sourсe #XX -- [ Pg.929 ]

See also in sourсe #XX -- [ Pg.306 ]

See also in sourсe #XX -- [ Pg.338 , Pg.645 , Pg.671 ]

See also in sourсe #XX -- [ Pg.194 ]

See also in sourсe #XX -- [ Pg.207 ]

See also in sourсe #XX -- [ Pg.278 , Pg.394 ]

See also in sourсe #XX -- [ Pg.306 ]

See also in sourсe #XX -- [ Pg.518 , Pg.519 ]

See also in sourсe #XX -- [ Pg.98 , Pg.99 , Pg.306 , Pg.321 ]

See also in sourсe #XX -- [ Pg.998 ]

See also in sourсe #XX -- [ Pg.258 ]




SEARCH



2- Aryl-2-norbornyl cation

Aryl cation proposal

Aryl cations, as intermediates

Aryl halides reactions with metal cations

Aryl radical cations

Aryl- and Alkylarylmethyl Cations

Arylation cationic route

Carbocations aryl cations

Diazonium salts aryl cations from

Ethers, aryl radical cation reactions

Organosulfur cation radicals arylation

Thermally Initiated cationic arylation

Triplet aryl cations

Tris(aryl)amine and Thianthrene Cation-Radicals

Vinyl cations 1,2-aryl rearrangements

© 2024 chempedia.info