Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron elemental properties

As is typical of second-row elements, boron has properties that distinguish it from the other elements in Group 13 as well as from the rest of the metalloids. The unique features of boron chemistry can be attributed to... [Pg.1521]

Scandium - the atomic number is 21 and the chemical symbol is Sc. The name derives from the Latin scandia for Scandinavia , where the mineral were found. It was discovered by the Swedish chemist Lars-Fredrik Nilson in 1879 from an ytterbium sample. In the same year, the Swedish chemist Per Theodore Cleve proved that scandium was Mendeleev s hypothetical element eka-boron , whose properties and position in the Period Table Mendeleev had previously predicted. [Pg.18]

Properties. Boron carbide has a rhombohedral structure consisting of an array of nearly regular icosahedra, each having twelve boron atoms at the vertices and three carbon atoms in a linear chain outside the icosahedra (3,4,6,7). Thus a descriptive chemical formula would be B12C3 [12075-36 4], Each boron atom is bonded to five others in the icosahedron as well as either to a carbon atom or to a boron atom in an adjacent icosahedron. The structure is similar to that of rhombohedral boron (see Boron, elemental). The theoretical density for B12C3 is 2.52 g/mL. The rigid framework of... [Pg.219]

Two poly(cyclodiborazane) polymers containing group-10 transition metal-acetylide groups P50 and P51 were prepared by Chujo et al. and represent a new kind of organometal-lic acetylide polymers functionalized with group-13 boron elements in the main chain.78 The structures of P50 and P51 were confirmed by IR and NMR ( H, 31P, and nB) spectra. The optical properties were studied by UV-vis absorption and emission measurements. It was shown that these polymers display extended -conjugation length via transition metal and boron atom with enhanced air- and moisture stability. [Pg.263]

Elemental boron has properties that place it on the borderline between metals and non-metals. It is a semiconductor, not a metallic conductor, and chemically must be classed as a non-metal. In general, boron chemistry resembles that of Si more closely than that of Al, Ga, In and Tl. The main resemblances to Si and differences from Al are the following ... [Pg.224]

Bower. J. G., Elemental Boron, Preparation, Properties and Applications, in Progress in Boron Chemistry, (R. Brotherton and H. Steinberg, eds.), Pergamon Press, Oxford, UK (1969)... [Pg.155]

The boron element existing as alkanolamine borate group could greatly improve the extreme pressure, anti-wear, and anh-rust performance of boron-containing thiophosphite derivative, especially the anti-rust performance, but only a small effect on the friction reducing and anticorrosion properties were shown. [Pg.181]

Grushin, V. V., Biegadze, V. I., and Kalinin, V. N. 1988. Synthesis and properties of carboranes( 12) containing boron-element bonds. 7. Organomet. Ghem. Libr., 20, 1-68. [Pg.140]

The data in Table 7.1 show that, as expected, density, ionic radius, and atomic radius increase with increasing atomic number. However, we should also note the marked differences in m.p. and liquid range of boron compared with the other Group III elements here we have the first indication of the very large difference in properties between boron and the other elements in the group. Boron is in fact a non-metal, whilst the remaining elements are metals with closely related properties. [Pg.138]

The tribromide and triodide of both boron and aluminium can be made by the direct combination of the elements although better methods are known for each halide. The properties of each halide closely resemble that of the chloride. [Pg.156]

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

Thousands of compounds of the actinide elements have been prepared, and the properties of some of the important binary compounds are summarized in Table 8 (13,17,18,22). The binary compounds with carbon, boron, nitrogen, siUcon, and sulfur are not included these are of interest, however, because of their stabiUty at high temperatures. A large number of ternary compounds, including numerous oxyhaUdes, and more compHcated compounds have been synthesized and characterized. These include many intermediate (nonstoichiometric) oxides, and besides the nitrates, sulfates, peroxides, and carbonates, compounds such as phosphates, arsenates, cyanides, cyanates, thiocyanates, selenocyanates, sulfites, selenates, selenites, teUurates, tellurites, selenides, and teUurides. [Pg.221]

The physical properties of elemental boron are significantly affected by purity and crystal form. In addition to being an amorphous powder, boron has four crystalline forms a-rhombohedral, P-rhombohedral, a-tetragonal, and -tetragonal. The a-rhombohedral form has mp 2180°C, sublimes at approximately 3650°C, and has a density of 2.45 g/mL. Amorphous boron, by comparison, has mp 2300°C, sublimes at approximately 2550°C, and has a density of 2.35 g/mL. [Pg.183]

Lower Oxides. A number of hard, refractory suboxides have been prepared either as by-products of elemental boron production (1) or by the reaction of boron and boric acid at high temperatures and pressures (39). It appears that the various oxides represented as B O, B O, B22O2, and B23O2 may all be the same material ia varying degrees of purity. A representative crystalline substance was determined to be rhombohedral boron suboxide, B12O2, usually mixed with traces of boron or B2O3 (39). A study has been made of the mechanical properties of this material, which exhibits a hardness... [Pg.191]

Next, let us look at modification of CNTs. There are many approaches to modifying the electronic structure of CNTs oxidation [39], doping (intercalation) [69], filling [70] and substitution by hetero elements like boron and nitrogen atoms [71,72]. There have been few studies on the application of these CNTs but it will be interesting to study applications as well as electronic properties. [Pg.180]

The determination of precise physical properties for elemental boron is bedevilled by the twin difficulties of complex polymorphism and contamination by irremovable impurities. Boron is an extremely hard refractory solid of high mp, low density and very low electrical conductivity. Crystalline forms are dark red in transmitted light and powdered forms are black. The most stable ()3-rhombohedral) modification has mp 2092°C (exceeded only by C among the non-metals), bp 4000°C, d 2.35 gcm (a-rhombohedral form 2.45gcm ), A77sublimation 570kJ per mol of B, electrical conductivity at room temperature 1.5 x 10 ohm cm- . [Pg.144]

The atomic properties of the Group 13 elements (including boron) are compared in Table 7.4. All have odd atomic numbers and correspondingly few stable isotopes. The varying precision of... [Pg.222]

A photovoltaic cell (often called a solar cell) consists of layers of semiconductor materials with different electronic properties. In most of today s solar cells the semiconductor is silicon, an abundant element in the earth s crust. By doping (i.e., chemically introducing impurity elements) most of the silicon with boron to give it a positive or p-type electrical character, and doping a thin layer on the front of the cell with phosphorus to give it a negative or n-type character, a transition region between the two types... [Pg.1058]

The diagonal line or stairway that starts to the left of boron in the periodic table (Figure 2.7, page 31) separates metals from nonmetals. The more than 80 elements to the left and below that line, shown in blue in the table, have the properties of metals in particular, they have high electrical conductivities. Elements above and to the right of the stairway are nonmetals (yellow) about 18 elements fit in that category. [Pg.33]

By the middle of the nineteenth century more than 60 elements were known with new ones continuing to be discovered. For each of these elements, chemists attempted to determine its atomic weight, density, specific heat, and other properties. The result was a collection of facts, which lacked rational order, Mendeleev noticed that if the elements were arranged by their atomic weights, then valencies and other properties tended to recur periodically. However, there were gaps in the pattern and in a paper of 1871 Mendeleev asserted that these corresponded to elements that existed but had not yet been discovered. He named three of these elements eka-aluminium, eka-boron and eka-silicon and gave detailed descriptions of their properties. The reaction of the scientific world was sceptical. But then in 1874 Lecoq de Boisbaudran found an... [Pg.46]

Boron forms perhaps the most extraordinary structures of all the elements. It has a high ionization energy and is a metalloid that forms covalent bonds, like its diagonal neighbor silicon. However, because it has only three electrons in its valence shell and has a small atomic radius, it tends to form compounds that have incomplete octets (Section 2.11) or are electron deficient (Section 3.8). These unusual bonding characteristics lead to the remarkable properties that have made boron an essential element of modern technology and, in particular, nan otechn ol ogy. [Pg.718]

Boron production remains quite low despite the element s desirable properties of hardness and low density. [Pg.718]

Boron is a hard metalloid with pronounced nonmetallic properties. Aluminum is a light, strong, amphoteric, reactive metallic element with a surface that becomes passivated when exposed to air. [Pg.719]

Boron, a metalloid with largely nonmetallic properties, has acidic oxides. Aluminum, its metallic neighbor, has amphoteric oxides (like its diagonal neighbor in Group 2, beryllium). The oxides of both elements are important in their own right, as sources of the elements, and as the starting point for the manufacture of other compounds. [Pg.720]


See other pages where Boron elemental properties is mentioned: [Pg.182]    [Pg.203]    [Pg.203]    [Pg.26]    [Pg.39]    [Pg.87]    [Pg.14]    [Pg.14]    [Pg.167]    [Pg.124]    [Pg.345]    [Pg.7]    [Pg.53]    [Pg.366]    [Pg.466]    [Pg.144]    [Pg.146]    [Pg.223]    [Pg.152]    [Pg.47]    [Pg.128]    [Pg.355]   
See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Atomic properties boron family elements

Boron elemental

Boron properties

Boronates properties

Elements properties

© 2024 chempedia.info