Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers solubility

Polymerization of Cyclic Ethers and Formats by Poly-THF Dioxolenium Salt. The polymerization of cyclic ethers and formals by PTHF-dioxolenium salt was carried out to clarify the presence of termination or transfer reactions. The results are shown in Table IV. In the polymerization of 3,3-bischloromethyloxetane (BCMO), block copolymer soluble in chloroform and having the expected molecular weight was formed the homopolymer of BCMO insoluble in chloroform was not observed. The block copolymer showed crystalline bands of BCMO at 700, 860, and 890 cm 1, suggesting the formation of ABA block. [Pg.263]

In the polymerization of 7-oxa [2.2.1]bicycloheptane (OBH), the formation of block copolymer soluble in chloroform and homopolymer... [Pg.263]

Acrylamide copolymers designed to reduce undesired amide group hydrolysis, increase thermal stability, and improve solubility in saline media have been studied for EOR appHcations (121—128). These polymers stiH tend to be shear sensitive. Most copolymers evaluated for EOR have been random copolymers. However, block copolymers of acrylamide and AMPS also have utiHty (129). [Pg.192]

Copolymerizations of benzvalene with norhornene have been used to prepare block copolymers that are more stable and more soluble than the polybenzvalene (32). Upon conversion to (CH), some phase separation of nonconverted polynorhornene occurs. Other copolymerizations of acetylene with a variety of monomers and carrier polymers have been employed in the preparation of soluble polyacetylenes. Direct copolymeriza tion of acetylene with other monomers (33—39), and various techniques for grafting polyacetylene side chains onto solubilized carrier polymers (40—43), have been studied. In most cases, the resulting copolymers exhibit poorer electrical properties as solubiUty increases. [Pg.36]

These problems may be overcome by using block copolymers. The polymer blocks are chosen to be selectively soluble in the aqueous and oil phase, respectively (see Copolymers). [Pg.201]

Numerous reports of comparable levels of success in correlating adhesion performance with the Scatchard-Hildebrand solubility parameters can be found in the literature [116,120-127], but failures of this approach have also been documented [128-132J. Particularly revealing are cases in which failure was attributed to the inability of the Scatchard-Hildebrand solubility parameter to adequately account for donor-acceptor (acid-base) interactions [130,132]. Useful reviews of the use of solubility parameters for choosing block copolymer compatibilizers have been prepared by Ohm [133] and by Gaylord [134]. General reviews of the use of solubility parameters in polymer science have been given by Barton [135], Van Krevelen [114], and Hansen [136]. [Pg.54]

Aromatic resins. Fully aromatic resins are used in block copolymer and ethylene copolymer systems. In the former they are soluble in the styrenic end blocks upon cooling where they serve to increase the strength, stiffness, and creep... [Pg.721]

Absorption is widely used as a raw material and/or product recovery technique in separation and purification of gaseous streams containing high concentrations of VOC, especially water-soluble compounds such as methanol, ethanol, isopropanol, butanol, acetone, and formaldehyde. Hydrophobic VOC can be absorbed using an amphiphilic block copolymer dissolved in water. However, as an emission control... [Pg.447]

A very special type of ABA block copolymer where A is a thermoplastic (e.g., styrene) and B an elastomer (e.g., butadiene) can have properties at ambient temperatures, such as a crosslinked rubber. Domain formations (which serves as a physical crosslinking and reinforcement sites) impart valuable features to block copolymers. They are thermoplastic, can be eaisly molded, and are soluble in common solvents. A domain structure can be shown as in Fig. 2. [Pg.726]

This mechanism of initiation is confirmed by the fact that, when the PAN-PEO block copolymer is treated with diisocyanate in benzene in the presence of pyridine acting as catalyst, copolymers lose their solubility in DMF as a result of the formation of intermolecular chemical bonds75). [Pg.131]

AB diblock copolymers in the presence of a selective surface can form an adsorbed layer, which is a planar form of aggregation or self-assembly. This is very useful in the manipulation of the surface properties of solid surfaces, especially those that are employed in liquid media. Several situations have been studied both theoretically and experimentally, among them the case of a selective surface but a nonselective solvent [75] which results in swelling of both the anchor and the buoy layers. However, we concentrate on the situation most closely related to the micelle conditions just discussed, namely, adsorption from a selective solvent. Our theoretical discussion is adapted and abbreviated from that of Marques et al. [76], who considered many features not discussed here. They began their analysis from the grand canonical free energy of a block copolymer layer in equilibrium with a reservoir containing soluble block copolymer at chemical potential peK. They also considered the possible effects of micellization in solution on the adsorption process [61]. We assume in this presentation that the anchor layer is in a solvent-free, melt state above Tg. The anchor layer is assumed to be thin and smooth, with a sharp interface between it and the solvent swollen buoy layer. [Pg.50]

Hedrick et al. reported imide aryl ether ketone segmented block copolymers.228 The block copolymers were prepared via a two-step process. Both a bisphenol-A-based amorphous block and a semicrystalline block were prepared from a soluble and amorphous ketimine precursor. The blocks of poly(arylene ether ether ketone) oligomers with Mn range of 6000-12,000 g/mol were coreacted with 4,4,-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) diethyl ester diacyl chloride in NMP in the presence of A - me thy 1 morphi 1 i nc. Clear films with high moduli by solution casting and followed by curing were obtained. Multiphase morphologies were observed in both cases. [Pg.360]

The block copolymer yield is quantitative accurate characterization of the samples is however difficult when the lactam blocks are long, because of their high crystallinity and consequent low solubility. [Pg.168]

Seymour and coworkers (27,28,29,30) actually used these composition gradients to prepare block copolymers by swelling particles containing occluded (i.e., living) macroradicals with a second monomer. Such block copolymers were prepared from occluded vinylacetate, methyl methacrylate, and acrylonitrile macroradicals, and the yield of block copolymers was studied as a function of the solubility and rate of diffusion of the swelling monomer in the particles. [Pg.275]

Recently, unique vesicle-forming (spherical bUayers that offer a hydrophilic reservoir, suitable for incorporation of water-soluble molecules, as well as hydrophobic wall that protects the loaded molecules from the external solution) setf-assembUng peptide-based amphiphilic block copolymers that mimic biological membranes have attracted great interest as polymersomes or functional polymersomes due to their new and promising applications in dmg delivery and artificial cells [ 122]. However, in all the cases the block copolymers formed are chemically dispersed and are often contaminated with homopolymer. [Pg.126]

Vaterite is thermodynamically most unstable in the three crystal structures. Vaterite, however, is expected to be used in various purposes, because it has some features such as high specific surface area, high solubility, high dispersion, and small specific gravity compared with the other two crystal systems. Spherical vaterite crystals have already been reported in the presence of divalent cations [33], a surfactant [bis(2-ethylhexyl)sodium sulfate (AOT)] [32], poly(styrene-sulfonate) [34], poly(vinylalcohol) [13], and double-hydrophilic block copolymers [31]. The control of the particle size of spherical vaterite should be important for application as pigments, fillers and dentifrice. [Pg.149]

Various substituted styrene-alkyl methacrylate block copolymers and all-acrylic block copolymers have been synthesized in a controlled fashion demonstrating predictable molecular weight and narrow molecular weight distributions. Table I depicts various poly (t-butylstyrene)-b-poly(t-butyl methacrylate) (PTBS-PTBMA) and poly(methyl methacrylate)-b-poly(t-butyl methacrylate) (PMMA-PTBMA) samples. In addition, all-acrylic block copolymers based on poly(2-ethylhexyl methacrylate)-b-poly(t-butyl methacrylate) have been recently synthesized and offer many unique possibilities due to the low glass transition temperature of PEHMA. In most cases, a range of 5-25 wt.% of alkyl methacrylate was incorporated into the block copolymer. This composition not only facilitated solubility during subsequent hydrolysis but also limited the maximum level of derived ionic functionality. [Pg.264]

Acrylamide copolymers designed to reduce undesired amide group hydrolysis, increase thermal stability, and improve solubility in saline media have been synthesized and studied for EOR applications. These polymers still tend to be shear sensitive. Acrylamide comonomers that have been used include 2-acrylamido-2-methylpropane sulfonate, abbreviated AMPS, (1,321-324), 2-sulfo-ethylmethacrylate (325,326), diacetone acrylamide (324, 326), and vinylpyrrolidinone (327,328). Acrylamide terpolymers include those with sodium acrylate and acrylamido-N-dodecyl-N-butyl sulfonate (329), with AMPS and N,N-dimethylacrylamide (330), with AMPS and N-vinylpyrrolidinone (331), and with sodium acrylate and sodium methacrylate (332). While most copolymers tested have been random copolymers, block copolymers of acrylamide and AMPS also have utility in this application (333). [Pg.37]


See other pages where Block copolymers solubility is mentioned: [Pg.467]    [Pg.27]    [Pg.347]    [Pg.183]    [Pg.14]    [Pg.484]    [Pg.716]    [Pg.723]    [Pg.452]    [Pg.606]    [Pg.72]    [Pg.552]    [Pg.389]    [Pg.282]    [Pg.29]    [Pg.52]    [Pg.53]    [Pg.62]    [Pg.516]    [Pg.797]    [Pg.799]    [Pg.800]    [Pg.452]    [Pg.262]    [Pg.267]    [Pg.174]    [Pg.285]    [Pg.57]    [Pg.25]    [Pg.489]    [Pg.490]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Copolymer solubility

© 2024 chempedia.info