Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Swelling monomers

Seymour and coworkers (27,28,29,30) actually used these composition gradients to prepare block copolymers by swelling particles containing occluded (i.e., living) macroradicals with a second monomer. Such block copolymers were prepared from occluded vinylacetate, methyl methacrylate, and acrylonitrile macroradicals, and the yield of block copolymers was studied as a function of the solubility and rate of diffusion of the swelling monomer in the particles. [Pg.275]

Provided that the monomer droplets are sufficiently small, which is usually the case, diffusion is rapid enough to replace monomer consumed in the reaction and to supply the additional amount required for equilibrium swelling of the polymer particles (24). Because of this swelling, monomer droplets disappear from the reaction mixture before polymerization is completed. From this moment on the reaction slows down. Final conversions of close to 100% can usually be obtained. [Pg.8]

Fig. 1. SAE J200 Classification system for ASTM No. 3 oil where in volume swell nr = no requirement. EPDM is ethylene—propylene—diene monomer HR, butyl mbber SBR, styrene—butadiene mbber NR, natural mbber VMQ, methyl vinyl siUcone CR, chloroprene FKM, fluoroelastomer FVMQ, fluorovinyl methyl siUcone ACM, acryUc elastomers HSN, hydrogenated nitrile ECO, epichlorohydrin and NBR, nitrile mbber. Fig. 1. SAE J200 Classification system for ASTM No. 3 oil where in volume swell nr = no requirement. EPDM is ethylene—propylene—diene monomer HR, butyl mbber SBR, styrene—butadiene mbber NR, natural mbber VMQ, methyl vinyl siUcone CR, chloroprene FKM, fluoroelastomer FVMQ, fluorovinyl methyl siUcone ACM, acryUc elastomers HSN, hydrogenated nitrile ECO, epichlorohydrin and NBR, nitrile mbber.
Structure—Property Relationships The modem approach to the development of new elastomers is to satisfy specific appHcation requirements. AcryUc elastomers are very powerhil in this respect, because they can be tailor-made to meet certain performance requirements. Even though the stmcture—property studies are proprietary knowledge of each acryUc elastomer manufacturer, some significant information can be found in the Hterature (18,41). Figure 3a shows the predicted according to GCT, and the volume swell in reference duid, ASTM No. 3 oil (42), related to each monomer composition. Figure 3b shows thermal aging resistance of acryHc elastomers as a function of backbone monomer composition. [Pg.476]

Fig. 3. Elastomer properties as a function of monomer composition, butyl acrylate (BA), ethyl acrylate (FA), and methoxyethyl acrylate (MEA). (a), (—) glass-transition temperature (------------) swelling in ASTM No. 3 oil (b) (-) residual elongation at break, %, after heat aging. Fig. 3. Elastomer properties as a function of monomer composition, butyl acrylate (BA), ethyl acrylate (FA), and methoxyethyl acrylate (MEA). (a), (—) glass-transition temperature (------------) swelling in ASTM No. 3 oil (b) (-) residual elongation at break, %, after heat aging.
Fig. 3. The percent volume swell in benzene after seven days at 21°C compared with the wt % of fluorine on standard recommended compounds. A, copolymers of vinyUdene fluoride—hexafluoropropylene B, terpolymers of vinyUdene fluoride—hexafluoropropylene—tetrafluoroethylene C, terpolymers of vinyhdene fluoride—hexafluoropropylene—tetrafluoroethylene-cure site monomer D, copolymer of tetrafluoroethylene—perfluoro(methyl vinyl ether)-cure... Fig. 3. The percent volume swell in benzene after seven days at 21°C compared with the wt % of fluorine on standard recommended compounds. A, copolymers of vinyUdene fluoride—hexafluoropropylene B, terpolymers of vinyUdene fluoride—hexafluoropropylene—tetrafluoroethylene C, terpolymers of vinyhdene fluoride—hexafluoropropylene—tetrafluoroethylene-cure site monomer D, copolymer of tetrafluoroethylene—perfluoro(methyl vinyl ether)-cure...
Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

Monomer molecules, which have a low but finite solubility in water, diffuse through the water and drift into the soap micelles and swell them. The initiator decomposes into free radicals which also find their way into the micelles and activate polymerisation of a chain within the micelle. Chain growth proceeds until a second radical enters the micelle and starts the growth of a second chain. From kinetic considerations it can be shown that two growing radicals can survive in the same micelle for a few thousandths of a second only before mutual termination occurs. The micelles then remain inactive until a third radical enters the micelle, initiating growth of another chain which continues until a fourth radical comes into the micelle. It is thus seen that statistically the micelle is active for half the time, and as a corollary, at any one time half the micelles contain growing chains. [Pg.28]

In attempts to further improve the stability of fluorine-containing elastomers Du Pont developed a polymer with no C—H groups. This material is a terpolymer of tetrafluoroethylene, perfluoro(methyl vinyl ether) and, in small amounts, a cure site monomer of undisclosed composition. Marketed as Kalrez in 1975 the polymer withstands air oxidation up to 290-315°C and has an extremely low volume swell in a wide range of solvents, properties unmatched by any other commercial fluoroelastomer. This rubber is, however, very expensive, about 20 times the cost of the FKM rubbers and quoted at 1500/kg in 1990, and production is only of the order of 1 t.p.a. In 1992 Du Pont offered a material costing about 75% as much as Kalrez and marketed as Zalak. Structurally, it differs mainly from Kalrez in the choice of cure-site monomer. [Pg.382]

The successful development of eye contact lenses led in turn to a demand for soft contact lenses. Such a demand was eventually met by the preparation of copolymers using a combination of an acrylic ester monomer such as methyl methacrylate, a cross-linkable monomer such as a dimethacrylate, and a monomer whose homopolymer is soluble or highly swollen in water such as N-vinyl pyrrolidone. Such copolymers swell in water (hence the term hydrophilic), the degree of swelling being controlled by the specific type and amount of the monomers used. In use the lens is swollen to equilibrium in water, a typical soft lens having a water content of about 75%. [Pg.420]

Solvent swelling experiments, with CH2CI2 and ECA polymer crosslinked with 7, demonstrate that the addition of a difunctional cyanoacrylate monomer does improve solvent resistance [6], shown in Fig. 1. [Pg.852]

In addition to monomers and the initiator, an inert liquid (diluent) must be added to the monomer phase to influence the pore structure and swelling behavior of the beaded resin. The monomer diluent is usually a hydrophobic liquid such as toluene, heptane, or pentanol. It is noteworthy that the namre and the percentage of the monomer diluent also influence the rate of polymerization. This may be mainly a concentration or precipitation effect, depending on whether the diluent is a solvent or precipitant for the polymer. For example, when the diluent is a good solvent such as toluene to polystyrene, the polymerizations proceed at a correspondingly slow rate, whereas with a nonsolvent such as pentanol to polystyrene the opposite is true. [Pg.7]

A macroporous polystyrene-divinylbenzene copolymer, produced by copolymerizing a mixture of styrene and divinylbenzene, is dissolved in an organic liquid such as t-amyl alcohol or isooctane, which is a solvent for monomers. This solvent is unable to substantially swell the resulting copolymer. Macroporous cation-exchange beads are also produced from these macroporous copolymers (25,26). [Pg.8]

Two different methods have been used for the incorporation of the activating ogliomer (or monomer) in the seed particles. The first method involves the application of a small organic chemical, such as chloroundecane or dibutyl phthalate, which is incorporated into the particles in the first swelling step. In the second method, an ogliomer compound is formed by polymerization of monomers that are absorbed inside the seed particles. [Pg.16]

C Swelling of the Activated Seed Particles with Monomers or a Mixture of Monomers... [Pg.17]

The second step in the production of monodispersed polymer particles involves the swelling of activated particles with a monomer or a mixture of monomers, diluents, and porogens, and the shape of the swollen oil droplets must be maintained in the continuous aqueous phase. The monomer or the mixture of monomers may be added in bulk form, preferably as an aqueous dispersion to increase the rate of swelling, especially in the case of relatively water-insoluble monomers. [Pg.17]


See other pages where Swelling monomers is mentioned: [Pg.215]    [Pg.32]    [Pg.54]    [Pg.53]    [Pg.54]    [Pg.128]    [Pg.100]    [Pg.239]    [Pg.239]    [Pg.260]    [Pg.35]    [Pg.273]    [Pg.215]    [Pg.32]    [Pg.54]    [Pg.53]    [Pg.54]    [Pg.128]    [Pg.100]    [Pg.239]    [Pg.239]    [Pg.260]    [Pg.35]    [Pg.273]    [Pg.2660]    [Pg.432]    [Pg.331]    [Pg.255]    [Pg.401]    [Pg.210]    [Pg.228]    [Pg.83]    [Pg.227]    [Pg.229]    [Pg.429]    [Pg.526]    [Pg.105]    [Pg.490]    [Pg.538]    [Pg.2004]    [Pg.382]    [Pg.1114]    [Pg.7]    [Pg.10]    [Pg.15]    [Pg.17]    [Pg.17]   
See also in sourсe #XX -- [ Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.203 , Pg.204 , Pg.205 ]




SEARCH



Latex particles with monomers, equilibrium swelling

Monomer swelling method, dynamic

Monomer swelling step

© 2024 chempedia.info