Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bismuth molybdate selective

Fig. 2. Mechanism of selective ammoxidation and oxidation of propylene over bismuth molybdate catalysts. (31). Fig. 2. Mechanism of selective ammoxidation and oxidation of propylene over bismuth molybdate catalysts. (31).
The first catalysts used commercially to convert the propylene with high selectivity were mixed oxides of bismuth and molybdenum, referred to as bismuth molybdates. Improved catalysts consisting of a number of soHd phases have been developed, with each generation becoming more compHcated than its predecessor. Among the catalysts cited in a patent is the following Co gNi 2"Fe 3Bi (Mo0 22 Si02 with some P and K (88). Sihca is the... [Pg.181]

In the case of selective oxidation catalysis, the use of spectroscopy has provided critical Information about surface and solid state mechanisms. As Is well known( ), some of the most effective catalysts for selective oxidation of olefins are those based on bismuth molybdates. The Industrial significance of these catalysts stems from their unique ability to oxidize propylene and ammonia to acrylonitrile at high selectivity. Several key features of the surface mechanism of this catalytic process have recently been descrlbed(3-A). However, an understanding of the solid state transformations which occur on the catalyst surface or within the catalyst bulk under reaction conditions can only be deduced Indirectly by traditional probe molecule approaches. Direct Insights Into catalyst dynamics require the use of techniques which can probe the solid directly, preferably under reaction conditions. We have, therefore, examined several catalytlcally Important surface and solid state processes of bismuth molybdate based catalysts using multiple spectroscopic techniques Including Raman and Infrared spectroscopies, x-ray and neutron diffraction, and photoelectron spectroscopy. [Pg.27]

Selective oxidation and ammoxldatlon of propylene over bismuth molybdate catalysts occur by a redox mechanism whereby lattice oxygen (or Isoelectronlc NH) Is Inserted Into an allyllc Intermediate, formed via or-H abstraction from the olefin. The resulting anion vacancies are eventually filled by lattice oxygen which originates from gaseous oxygen dlssoclatlvely chemisorbed at surface sites which are spatially and structurally distinct from the sites of olefin oxidation. Mechanistic details about the... [Pg.28]

The structure of the single phase bismuth-iron molybdate compound of composition Bl3FeMo20.2 related to the scheellte structure of Bi2Mo30-2( ). It is reported(, ) that the catalytic activity and selectivity of bismuth-iron molybdate for propylene oxidation and ammoxidatlon is not greater than that of bismuth molybdate. [Pg.29]

Several previous studies have demonstrated the power of AEH in various catalyst systems (1-11). Often AEM can provide reasons for variations in activity and selectivity during catalyst aging by providing information about the location of the elements involved in the active catalyst, promoter, or poison. In some cases, direct quantitative correlations of AEM analysis and catalyst performance can be made. This paper first reviews some of the techniques for AEM analysis of catalysts and then provides some descriptions of applications to bismuth molybdates, Pd on carbon, zeolites, and Cu/ZnO catalysts. [Pg.362]

Bismuth Molybdates. Bismuth molybdates are used as selective oxidation catalysts. Several phases containing Bi and/or Mo may be mixed together to obtain desired catalytic properties. While selected area electron diffraction patterns can identify individual crystalline particles, diffraction techniques usually require considerable time for developing film and analyzing patterns. X-ray emission spectroscopy in the AEM can identify individual phases containing two detectable elements within a few minutes while the operator is at the microscope. [Pg.314]

Mechanisms There is a derth of knowledge about the mechanisms operative in selective oxidation reactions. The only exceptions are the reactions of ethylene to ethylene oxide on supported silver catalysts and of propylene to acrolein on bismuth molybdate type catalysts. For the latter, it is well established through isotopic labeling experiments that a symmetric allyl radical is an intermediate in the reaction and that its formation is rate-determining. Many studies simply extrapolate the results substantiated for this case to other reactions. New ideas on mechanisms are presented by Oyama, et oL, Parmaliana, et aL, and Laszlo. [Pg.12]

The oxidation of propene to acrolein has been one of the most studied selective oxidation reaction. The catalysts used are usually pure bismuth molybdates owing to the fact that these phases are present in industrial catalysts and that they exhibit rather good catalytic properties (1). However the industrial catalysts also contain bivalent cation molybdates like cobalt, iron and nickel molybdates, the presence of which improves both the activity and the selectivity of the catdysts (2,3). This improvement of performances for a mixture of phases with respect to each phase component, designated synergy effect, has recently been attributed to a support effect of the bivalent cation molybdate on the bismuth molybdate (4) or to a synergy effect due to remote control (5) or to more or less strong interaction between phases (6). However, this was proposed only in view of kinetic data obtained on a prepared supported catalyst. [Pg.262]

The results are presented in Table II and the variations of the rates of formation of acrolein and the selectivity to acrolein observed at 380°C on these catalysts as a function of their bismuth molybdate content are plotted in Fig. 3 and 4. The activity increased slowly to reach a maximum for a mass content of bismuth molybdate of... [Pg.264]

These results and the comparison between the catalyst particles before and after catalytic run point out the ability for these particles both to exchange electrons and oxygen anions and to change morphology under the conditions of the catalytic reaction with spreading of the oxides one over the other. These two phenomena should be at the basis of the explanation of synergy effect in molybdates based catalysts. The fact that some FexCoi.xMo04 particles remain free (i.e. not deposited on bismuth molybdate particles) show that even more active and selective catalysts may be obtained in more reliable preparation conditions. [Pg.270]

Light hydrocarbons consisting of oxygen or other heteroatoms are important intermediates in the chemical industry. Selective hydrocarbon oxidation of alkenes progressed dramatically with the discovery of bismuth molybdate mixed-metal-oxide catalysts because of their high selectivity and activity (>90%). These now form the basis of very important commercial multicomponent catalysts (which may contain mixed metal oxides) for the oxidation of propylene to acrolein and ammoxidation with ammonia to acrylonitrile and to propylene oxide. [Pg.101]

Among the oxide catalysts, bismuth molybdates that catalyse selective oxidation and ammoxidation of propylene to yield acrolein and acrylonitrile have received considerable attention (Grasselli Burrington, 1981) ... [Pg.523]

Multicomponent Bismuth Molybdate Catalyst A Highly Functionalized Catalyst System for the Selective Oxidation of Olefin... [Pg.233]

During the history of a half century from the first discovery of the reaction (/) and 35 years after the industrialization (2-4), these catalytic reactions, so-called allylic oxidations of lower olefins (Table I), have been improved year by year. Drastic changes have been introduced to the catalyst composition and preparation as well as to the reaction process. As a result, the total yield of acrylic acid from propylene reaches more than 90% under industrial conditions and the single pass yield of acrylonitrile also exceeds 80% in the commercial plants. The practical catalysts employed in the commercial plants consist of complicated multicomponent metal oxide systems including bismuth molybdate or iron antimonate as the main component. These modern catalyst systems show much higher activity and selectivity... [Pg.233]

Fig. I. Mechanism of selective oxidation of propylene to acrolein over bismuth molybdate catalyst by Burrington et al. (19). Fig. I. Mechanism of selective oxidation of propylene to acrolein over bismuth molybdate catalyst by Burrington et al. (19).
In spite of the accumulated mechanistic investigations, it still seems difficult to explain why multicomponent bismuth molybdate catalysts show much better performances in both the oxidation and the ammoxidation of propylene and isobutylene. The catalytic activity has been increased almost 100 times compared to the simple binary oxide catalysts to result in the lowering of the reaction temperatures 60 80°C. The selectivities to the partially oxidized products have been also improved remarkably, corresponding to the improvements of the catalyst composition and reaction conditions. The reaction mechanism shown in Figs. 1 and 2 have been partly examined on the multicomponent bismuth molybdate catalysts. However, there has been no evidence to suggest different mechanisms on the multicomponent bismuth molybdate catalysts. [Pg.236]

Investigations into the scheelite-type catalyst gave much valuable information on the reaction mechanisms of the allylic oxidations of olefin and catalyst design. However, in spite of their high specific activity and selectivity, catalyst systems with scheelite structure have disappeared from the commercial plants for the oxidation and ammoxidation of propylene. This may be attributable to their moderate catalytic activity owing to lower specific surface area compared to the multicomponent bismuth molybdate catalyst having multiphase structure. [Pg.242]

Fig. 14. The selectivity forming acrolein in the oxidation of propylene over the supported bismuth molybdate catalysts (52). (O) Bi2Mo3Oi2/CoMo04 ( )... Fig. 14. The selectivity forming acrolein in the oxidation of propylene over the supported bismuth molybdate catalysts (52). (O) Bi2Mo3Oi2/CoMo04 ( )...
Some progress has been made in explaining the splendid catalytic performance of multicomponent bismuth molybdates that are used widely for the industrial oxidations and ammoxidations of lower olefin. We have seen that the catalytic activity and selectivity are greatly enhanced by the multifunctionalization of the catalyst systems. Many functions newly introduced are... [Pg.269]


See other pages where Bismuth molybdate selective is mentioned: [Pg.26]    [Pg.128]    [Pg.26]    [Pg.128]    [Pg.182]    [Pg.34]    [Pg.405]    [Pg.184]    [Pg.17]    [Pg.183]    [Pg.248]    [Pg.201]    [Pg.41]    [Pg.517]    [Pg.524]    [Pg.524]    [Pg.235]    [Pg.237]    [Pg.238]    [Pg.241]    [Pg.246]    [Pg.247]    [Pg.253]    [Pg.257]    [Pg.293]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Bismuth molybdate

Bismuth molybdates

© 2024 chempedia.info