Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Beryllium industries using

As a pure metal, beryllium has few industrial uses. However, beryllium is transparent to X-rays, and is therefore used in the manufacture of windows for X-ray machines. [Pg.24]

Although it may not be valuable as a pure metal, beryllium is often mixed with other metals to form alloys that have industrial uses. One example is beryllium copper alloy, or beryllium bronze. This alloy is not only hard, but does not give off sparks when it is struck. This property makes it a useful material for electrical instruments and hammers that are used in explosive environments, such as in chemical laboratories that use hydrogen or factories that make rocket fuel. [Pg.24]

Because of their metallic properties and low mass, Be and Mg are used to form lightweight alloys for structural purposes. Ca sees less industrial use, although the phosphate is sometimes utifized in fertilizers. Sr and Ba have no significant industrial applications. Both Be and Ra are used in various devices, the former because it is quite transparent to x-rays and the latter because it is a ready source of both a- and y-radiation. Mg and Ca are essential to all living systems for many reasons the other alkali earths have no known biological roles, see also Beryllium Cesium Curie, Marie Sklodowska Davy, Humphry Francium Magnesium Potassium Rubidium Wohler, Friedrich. [Pg.62]

The list of industries using powders, or processes in which there is a substance used as spray or a mist, is long and increasing. My first exposure to the problems of powder technology began in 1955 when I studied the characterization of powders used to fabricate parts of nuclear weapons. One study involved the metal beryllium which was used in powder form. The production of dense beryllium required powders having a specific size and shape distribution. Beryllium powder is however a respirable health hazard and to characterize the powder in a safe atmosphere required the development of new methods of characterizing powders. [Pg.1]

Before beryllium alloys were developed, the principal use of berryllium was as oxide in the manufacture of refractories, spark plugs, high quality electrical porcelains, and as beryllium nitrate in the fabrication of Welsbach gas mantles. It was not until the early 1930 s, however, that metallurgical improvements created a large enough demand to justify a beryllium industry. Berylliumcopper, with small additions has been, by far, the important alloy. [Pg.37]

As a light, strong metal, beryllium holds considerable promise as a useful engineering material, but because of an inherent directional brittleness, a really significant commercial use, e.g. in the aircraft industry, has not proved possible. It has been used to a limited extent in aerospace applications, and it was employed as heat shields for the Project Mercury space capsule. It has also found use in precision guidance systems when fairly pure environmental conditions can be assured. [Pg.831]

Beryllium is obtained by electrolytic reduction of molten beryllium chloride. The element s low density makes it useful for the construction of missiles and satellites. Beryllium is also used as windows for x-ray tubes because Be atoms have so few electrons, thin sheets of the metal are transparent to x-rays and allow the rays to escape. Beryllium is added in small amounts to copper the small Be atoms pin the Cu atoms together in an interstitial alloy that is more rigid than pure copper but still conducts electricity well. These hard, electrically conducting alloys are formed into nonsparking tools for use in oil refineries and grain elevators, where there is a risk of explosion. Beryllium-copper alloys are also used in the electronics industry to form tiny nonmagnetic parts and contacts that resist deformation and corrosion. [Pg.713]

Titanium tetrachloride is produced on an industrial scale by the chlorination of titanium dioxide-carbon mixtures in reactors lined with silica. During the reactor operation, the lining comes into contact not only with chlorine but also with titanium tetrachloride. There appears to be no attack on silica by either of these as the lining remains intact. However, the use of such a reactor for chlorinating beryllium oxide by the carbon-chlorine reduction chlorination procedure is not possible because the silica lining is attacked in this case. This corrosion of silica can be traced to the attack of beryllium chloride on silica. The interaction of beryllium chloride with silica results in the formation of silicon tetrachloride in accordance with the reaction... [Pg.404]

Chemical precipitation is used in porcelain enameling to precipitate dissolved metals and phosphates. Chemical precipitation can be utilized to permit removal of metal ions such as iron, lead, tin, copper, zinc, cadmium, aluminum, mercury, manganese, cobalt, antimony, arsenic, beryllium, molybdenum, and trivalent chromium. Removal efficiency can approach 100% for the reduction of heavy metal ions. Porcelain enameling plants commonly use lime, caustic, and carbonate for chemical precipitation and pH adjustment. Coagulants used in the industry include alum, ferric chloride, ferric sulfate, and polymers.10-12... [Pg.329]

Airborne poisons in the nuclear weapons progam were not limited to radioactive materials released from weapons. The weapons technology involved the use of many exotic materials, some of which were toxic (e.g., beryllium). Hazardous releases of these materials occurred in industrial settings in urban areas and were studied by the Atomic Energy Commission as occupational and public health problems. [Pg.68]

A new area of research concerns exposure assessment for beryllium in the production of nuclear weapons at nuclear defense industries. A safe level of exposure to beryllium is still unknown. Potential explanations include (1) the current exposure standard may not be protective enough to prevent sensitization, or (2) past exposure surveillance may have underestimated the actual exposure level because of a lack of understanding of the complexity of beryllium exposures. Task-based exposure assessment provides information not directly available through conventional sampling. It directly links exposure to specific activity associated with contaminant generation and provides in-depth evaluation of the worker s role in a specific task. In-depth task analysis is being used to examine physical, postural, and cognitive demands of various tasks. [Pg.267]

Lithium, sodium, beryllium, magnesium, calcium, and radium are all made industrially by the electrolysis of their molten chlorides. These salts are all soluble in water, but aqueous solutions are not used for the electrolytic process. Explain why. [Pg.555]

Calcium oxide was used in ancient times to make mortar for building with stone. Both the metal and calcium compounds have many industrial as well as biological uses. Metallic calcium is used as an alloy agent for copper and aluminum. It is also used to purify lead and is a reducing agent for beryllium. [Pg.74]

Beryllium is an important metal alloy used in the nuclear power industry. Its presence in coal and oil results in more than 1250 tons being released into the environment annually from fuel combustion at power plants. Exposure is primarily from inhalation, but skin contact can result in dermatitis. Cigarette smokers also inhale a little beryllium. Initially, beryllium distributes to the liver, but ultimately is absorbed by bone. [Pg.126]

Metals more electronegative than magnesium, like beryllium, zinc, cadmium and mercury, form useful reagents for specific purposes, but the metals themselves are not sufficiently active to form organic derivatives under normal laboratory conditions and are unwanted in the environment since they are toxic. Aluminum compounds are useful for industrial purposes, but their use in the laboratory is insignificant in comparison with Grignard reagents. [Pg.103]

Occupational and environmental poisoning with metals, metalloids, and metal compounds is a major health problem. Exposure in the workplace is found in many industries, and exposure in the home and elsewhere in the nonoccupational environment is widespread. The classic metal poisons (arsenic, lead, and mercury) continue to be widely used. (Treatment of their toxicities is discussed in Chapter 57.) Occupational exposure and poisoning due to beryllium, cadmium, manganese, and uranium are relatively new occupational problems, which present new and previously unaddressed problems. [Pg.1224]

The crystal structure of beryllium carbide is cubic, density = 2.44 g/mL. The melting point is 2250—2400°C and the compound dissociates under vacuum at 2100°C (1). This compound is not used industrially, but Be2C is a potential first-wall material for fusion reactors, one on the very limited list of possible candidates (see Fusion energy). [Pg.75]

Metals frequently occurring in the state s waste streams include cadmium, chromium, lead, arsenic, zinc, copper, barium, nickel, antimony, beryllium, mercury, vanadium, cobalt, silver, and selenium. These metals are toxic to humans and other organisms, are persistent in the environment, and can bioaccumulate in food chains. They are typically used by businesses in many industrial categories, as shown in Table 2.1-1. [Pg.3]

Separation of Plutonium. The principal problem in the purification of metallic plutonium is the separation of a small amount of plutonium (ca 200—900 ppm) from large amounts of uranium, which contain intensely radioactive fission products. The plutonium yield or recovery must be high and the plutonium relatively pure with respect to fission products and light elements, such as lithium, beryllium, or boron. The purity required depends on the intended use for the plutonium. The high yield requirement is imposed by the price or value of the metal and by industrial health considerations, which require extremely low effluent concentrations. [Pg.200]


See other pages where Beryllium industries using is mentioned: [Pg.299]    [Pg.299]    [Pg.276]    [Pg.687]    [Pg.87]    [Pg.265]    [Pg.146]    [Pg.575]    [Pg.656]    [Pg.648]    [Pg.701]    [Pg.244]    [Pg.635]    [Pg.730]    [Pg.707]    [Pg.694]    [Pg.16]    [Pg.728]    [Pg.648]    [Pg.155]    [Pg.347]    [Pg.358]    [Pg.110]    [Pg.336]    [Pg.559]    [Pg.247]    [Pg.134]    [Pg.34]    [Pg.344]    [Pg.249]    [Pg.195]   
See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Beryllium industrial

Industrial use

© 2024 chempedia.info