Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene with substituted aromatics

Besides a variety of other methods, phenols can be prepared by metal-catalyzed oxidation of aromatic compounds with hydrogen peroxide. Often, however, the selectivity of this reaction is rather poor since phenol is more reactive toward oxidation than benzene itself, and substantial overoxidation occurs. In 1990/91 Kumar and coworkers reported on the hydroxylation of some aromatic compounds using titanium silicate TS-2 as catalyst and hydrogen peroxide as oxygen donor (equation 72) . Conversions ranged from 54% to 81% with substituted aromatic compounds being mainly transformed into the ortho-and para-products. With benzene as substrate, phenol as the monohydroxylated product... [Pg.527]

Extensive work on the interaction of aromatic compounds with xenon difluoride has been carried out in order to investigate the reaction mechanism and the scope of the fluorination depending on the substituents electronic nature.26-59 62 It has been found that benzene and substituted aromatics react with xenon difluoride at room temperature in the presence of hydrogen fluoride to form the typical products of electrophilic fluorination contaminated with low quantities of difluoro-substituted molecules. [Pg.228]

Olah and co-workers219 have applied Nafion-H in the benzylation of benzene with benzyl alcohols [Eq. (5.83)] and also reported the reaction of benzyl alcohol with substituted aromatics (toluene, xylenes, mesitylene) to yield diphenylmethanes. The reaction is performed under mild conditions and produces the corresponding dibenzyl ethers as byproducts (2-22%). The substrate and positional selectivity in competitive benzylation of benzene and toluene (1 1 molar ratio) was found to be almost the same as observed in solution-phase Friedel-Crafts benzylation with benzyl chloride (AICI3-CH3NO2). Cyclic products 56 and 57 resulting from cyclialkylation were isolated when Nafion-H-catalyzed benzylation was applied to 2-(hydroxymethyl) diphenylmethane and 3,4-dimethoxybenzyl alcohol, respectively. [Pg.565]

Figure 4.2 Hammett relationship (log 11/2 versus a) in the benzoylation reaction of benzene and substituted aromatic compounds with benzoyl chloride over H-BEA zeolite modified by indium oxides... Figure 4.2 Hammett relationship (log 11/2 versus a) in the benzoylation reaction of benzene and substituted aromatic compounds with benzoyl chloride over H-BEA zeolite modified by indium oxides...
The conversion of naphthalene to 2-naphthoic acids by irradiation with carbon dioxide and electron donors (e.g. amines or dimethoxybenzene) has been further investigated and the quantum yields of the reaction measured for different solvents and donors. Electron transfer also occurs in the photochemical phosphonation of naphthalene and phenanthrene achieved by irradiation with trialkyl-phosphites and electron acceptors such as 1,3-dicyanobenzene. The photonitration of phenol in aqueous solutions of nitrate ion has been reported and phenols have been prepared by irradiation of substituted benzenes with the aromatic N-oxide (132). ... [Pg.246]

Dewar and his co-workers, as mentioned above, investigated the reactivities of a number of polycyclic aromatic compounds because such compounds could provide data especially suitable for comparison with theoretical predictions ( 7.2.3). This work was extended to include some compounds related to biphenyl. The results were obtained by successively compounding pairs of results from competitive nitrations to obtain a scale of reactivities relative to that of benzene. Because the compounds studied were very reactive, the concentrations of nitric acid used were relatively small, being o-i8 mol 1 in the comparison of benzene with naphthalene, 5 x io mol 1 when naphthalene and anthanthrene were compared, and 3 x io mol 1 in the experiments with diphenylamine and carbazole. The observed partial rate factors are collected in table 5.3. Use of the competitive method in these experiments makes them of little value as sources of information about the mechanisms of the substitutions which occurred this shortcoming is important because in the experiments fuming nitric acid was used, rather than nitric acid free of nitrous acid, and with the most reactive compounds this leads to a... [Pg.82]

Monocyclic Aromatic Compounds. Except for six retained names, all monocyclic substituted aromatic hydrocarbons are named systematically as derivatives of benzene. Moreover, if the substituent introduced into a compound with a retained trivial name is identical with one already present in that compound, the compound is named as a derivative of benzene. These names are retained ... [Pg.5]

Although there are a wide variety of indole ring syntheses (25), most of the more useful examples fall within a small number of groups. Indole syntheses usually start with an aromatic compound, either monosubstituted or ortho-disubstituted. Those which begin with a monosubstituted starting material must at some point effect a substitution of the benzene ring. [Pg.86]

Polynuclear Aromatics. The alkylation of polynuclear aromatics with olefins and olefin-producing reagents is effected by acid catalysts. The alkylated products are more compHcated than are those produced by the alkylation of benzene because polynuclear aromatics have more than one position for substitution. For instance, the alkylation of naphthalene [91-20-3] with methanol over mordenite and Y-type zeoHtes at 400—450°C produces 1-methylnaphthalene [90-12-0] and 2-methylnaphthalene at a 2-/1- ratio of about 1.8. The selectivity to 2-methylnaphthalene [91-57-6] is increased by applying a ZSM-5 catalyst to give a 2-/1- ratio of about 8 (102). [Pg.53]

The meaning of the word aromaticity has evolved as understanding of the special properties of benzene and other aromatic molecules has deepened. Originally, aromaticity was associated with a special chemical reactivity. The aromatic hydrocarbons were considered to be those unsaturated systems that underwent substitution reactions in preference to addition. Later, the idea of special stability became more important. Benzene can be shown to be much lower in enthalpy than predicted by summation of the normal bond energies for the C=C, C—C, and C—H bonds in the Kekule representation of benzene. Aromaticity is now generally associated with this property of special stability of certain completely conjugated cyclic molecules. A major contribution to the stability of aromatic systems results from the delocalization of electrons in these molecules. [Pg.509]

The effect of substituents on electrophilic substitution can be placed on a quantitative basis by use ofpartial rate factors. The reactivity of each position in a substituted aromatic compound can be compared with that of benzene by measuring the overall rate, relative to benzene, and dissecting the total rate by dividing it among the ortho, meta, and para... [Pg.562]

The table below gives first-order rate constants for reaction of substituted benzenes with w-nitrobenzenesulfonyl peroxide. From these data, calculate the overall relative reactivity and partial rate factors. Does this reaction fit the pattern of an electrophilic aromatic substitution If so, does the active electrophile exhibit low, moderate, or high substrate and position selectivity ... [Pg.598]

If a substituted aromatic hydrocarbon is used, the ketone gioLip then enteis the paia-position, or, if this is occupied, the oitho-position. Substituted aromatic acid chlorides may. also be used, and if the acid is dibasic and has two caiboxyl chloiide gioups, two molecules of the aromatic hydiocaibon may be. attached. If phosgene is used with two molecules of benzene, benzophenone is obtained. [Pg.309]

In order to achieve high yields, the reaction usually is conducted by application of high pressure. For laboratory use, the need for high-pressure equipment, together with the toxicity of carbon monoxide, makes that reaction less practicable. The scope of that reaction is limited to benzene, alkyl substituted and certain other electron-rich aromatic compounds. With mono-substituted benzenes, thepara-for-mylated product is formed preferentially. Super-acidic catalysts have been developed, for example generated from trifluoromethanesulfonic acid, hydrogen fluoride and boron trifluoride the application of elevated pressure is then not necessary. [Pg.135]

The reaction of ozone with an aromatic compound is considerably slower than the reaction with an alkene. Complete ozonolysis of one mole of benzene with workup under non-oxidative conditions will yield three moles of glyoxal. The selective ozonolysis of particular bonds in appropriate aromatic compounds is used in organic synthesis, for example in the synthesis of a substituted biphenyl 8 from phenanthrene 7 ... [Pg.219]

Although many of the aromatic compounds based on benzene have pleasant odors, they are usually toxic, and some are carcinogenic. Volatile aromatic hydrocarbons are highly flammable and burn with a luminous, sooty flame. The effects of molecular size (in simple arenes as well as in substituted aromatics) and of molecular symmetry (e.g., xylene isomers) are noticeable in physical properties [48, p. 212 49, p. 375 50, p. 41]. Since the hybrid bonds of benzene rings are as stable as the single bonds in alkanes, aromatic compounds can participate in chemical reactions without disrupting the ring structure. [Pg.312]

Aromatic substitution reactions occur by addition of an electrophile such as Br+ to the aromatic ring to yield an allylic carbocation intermediate, followed by loss of H+. Show the structure of the intermediate formed by reaction of benzene with Br+. [Pg.546]

The most common reaction of aromatic compounds is electrophilic aromatic substitution. That is, an electrophile reacts with an aromatic ring and substitutes for one of the hydrogens. The reaction is characteristic of all aromatic rings, not just benzene and substituted benzenes. In fact, the ability of a compound to undergo electrophilic substitution is a good test of aromaticity- . [Pg.547]

Just as an aromatic ring is alkylated by reaction with an alkyl chloride, it is acylated by reaction with a carboxylic acid chloride, RCOC1, in the presence of AICI3. That is, an acyl group (-COR pronounced a-sil) is substituted onto the aromatic ring. For example, reaction of benzene with acetyl chloride yields the ketone, acetophenone. [Pg.557]

Another drawback to the use of amino-substituted benzenes in electrophilic aromatic substitution reactions is that Friedel-Crafts reactions are not successful (Section 16.3). The amino group forms an acid-base complex with the AICI3 catalyst, which prevents further reaction from occurring. Both drawbacks can be overcome, however, b3 carrying out electrophilic aromatic substitution reactions on the corresponding amide rather than on the free amine. [Pg.939]

Aromatic rings are much less reactive than their double-bond character would suggest they commonly undergo substitution rather than addition. Electrophilic substitution of benzene with electron-donating substituents is accelerated and takes place at the ortho and para positions preferentially. Electrophilic substitution of benzene with electron-withdrawing substituents takes place at a reduced rate and primarily at the meta positions. [Pg.864]

In a related procedure, even benzene and substituted benzenes (e.g., PhMe, PhCl, xylenes) can be converted to phenols in good yields with sodium perborate F3CS020H. " Aromatic amines, N-acyl amines, and phenols were hydroxylated with H2O2 in SbFs—HF. Pyridine and quinoline were converted to their 2-acetoxy derivatives in high yields with acetyl hypofluorite AcOF at -75°C. ... [Pg.724]

The chemical reactions of benzene and all aromatic compounds, with few exceptions, are unlike those of unsaturated aliphatic compounds (olefins) that is, addition reactions do not occur. Instead, the hydrogens on the ring are replaced by other atoms or groups of atoms. The aromatic ring remains unchanged by these substitution reactions. All six of the hydrogens in benzene can be replaced by other atoms. [Pg.75]

Direct esr evidence for the intermediacy of radical-cations was obtained on flowing solutions of Co(III) acetate and a variety of substituted benzenes and polynuclear aromatics together in glacial acetic acid or trifluoroacetic acid solution . A p value of —2.4 was reported for a series of toluenes but addition of chloride ions, which greatly accelerated the reaction rate, resulted in p falling to —1.35. Only trace quantities of -CH2OAC adducts were obtained and benzyl acetate is the chief product from toluene, in conformity with the equation given above. [Pg.374]

The 1,3,4-substituted benzene is reacted with an N,N-disubstituted-N -methyl-amine resulting in transfer of the methyl group to the 2-position of the aromatic ring, thereby creating a crowded 1,2,3,4-substituted aromatic [127]. No details on the nature of the substituents and the presence of a solvent are given, as the process is proprietary. The temperature in the micro reactor was set to 0 °C. [Pg.555]


See other pages where Benzene with substituted aromatics is mentioned: [Pg.213]    [Pg.524]    [Pg.57]    [Pg.13]    [Pg.533]    [Pg.71]    [Pg.75]    [Pg.509]    [Pg.38]    [Pg.138]    [Pg.169]    [Pg.509]    [Pg.32]    [Pg.254]    [Pg.31]    [Pg.480]    [Pg.158]    [Pg.66]    [Pg.143]    [Pg.708]    [Pg.105]    [Pg.226]    [Pg.70]    [Pg.158]    [Pg.152]   
See also in sourсe #XX -- [ Pg.591 , Pg.592 ]




SEARCH



Aromaticity benzene

Benzene aromatic substitution

Benzene substitution

Substitution substituted benzenes

© 2024 chempedia.info