Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzaldehyde aldol reactions

The synthesis of 3-phenyl-]-(2-pyridyl)-2-propen-]-one (2.4c) via an aldol reaction of 2-acetylpyridine with benzaldehyde has been described in the literature ". O jmpound 2.4a-e have been prepared in high yields, using slightly modified versions of these literature procedures. [Pg.50]

The higjily water-soluble dienophiles 2.4f and2.4g have been synthesised as outlined in Scheme 2.5. Both compounds were prepared from p-(bromomethyl)benzaldehyde (2.8) which was synthesised by reducing p-(bromomethyl)benzonitrile (2.7) with diisobutyl aluminium hydride following a literature procedure2.4f was obtained in two steps by conversion of 2.8 to the corresponding sodium sulfonate (2.9), followed by an aldol reaction with 2-acetylpyridine. In the preparation of 2.4g the sequence of steps had to be reversed Here, the aldol condensation of 2.8 with 2-acetylpyridine was followed by nucleophilic substitution of the bromide of 2.10 by trimethylamine. Attempts to prepare 2.4f from 2.10 by treatment with sodium sulfite failed, due to decomposition of 2.10 under the conditions required for the substitution by sulfite anion. [Pg.50]

Furthermore, in analogy to the aldol reaction, a-chloro-a,3-unsaturated esters have been observed—likely the result of 3-elimination of water from the intermediate halohydrin. For example, when benzaldehyde is condensed with the enolate of 17, chloride 19 was obtained. ... [Pg.16]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The situation can be summarized by saying that a mixed aldol reaction leads to a mixture of products unless one of the partners either has no a hydrogens but is a good electrophilic acceptor (such as benzaldehyde) or is an unusually acidic nucleophilic donor (such as ethyl acetoacetate). [Pg.886]

The aldol reaction is a carbonyl condensation that occurs between two aldehyde or ketone molecules. Aldol reactions are reversible, leading first to a /3-hydroxy aldehyde or ketone and then to an cr,/6-unsaturated product. Mixed aldol condensations between two different aldehydes or ketones generally give a mixture of all four possible products. A mixed reaction can be successful, however, if one of the two partners is an unusually good donor (ethyl aceto-acetate, for instance) or if it can act only as an acceptor (formaldehyde and benzaldehyde, for instance). Intramolecular aldol condensations of 1,4- and 1,5-diketones are also successful and provide a good way to make five-and six-inembered rings. [Pg.904]

A powerful variation of the iron acetyl enolate aldol reaction utilizes the cnolate of complex 8 which bears a (pentafluorophenyl)diphenylphosphane ligand in place of the more usual triphenylphosphane47. The enolate species 9. prepared by treatment of 8 with lithium diiso-propylamide, reacts at — 78 °C with benzaldehyde to produce the aldol adduct 10 with a d.r. of 98.5 1.5. [Pg.537]

The achiral molybdenum enolate 2 reacts with benzophenone and benzaldehyde at —78 °C to yield the x,/i-unsaturated molybdenum-acyl complexes34, which presumably arise via elimination of hydroxide from unobserved aldolate intermediates such as 3. No examples of such aldol reactions with complexes that are chiral at molybdenum have been reported. [Pg.561]

The aldol reaction of 2,2-dimethyl-3-pentanone, which is mediated by chiral lithium amide bases, is another route for the formation of nonracemic aldols. Indeed, (lS,2S)-l-hydroxy-2,4,4-trimethyl-l-phenyl-3-pentanone (21) is obtained in 68% ee, if the chiral lithiated amide (/ )-A-isopropyl-n-lithio-2-methoxy-l-phenylethanamine is used in order to chelate the (Z)-lithium cnolate, and which thus promotes the addition to benzaldehyde in an enantioselective manner. No anti-adduct is formed25. [Pg.583]

Another SBU with open metal sites is the tri-p-oxo carboxylate cluster (see Section 4.2.2 and Figure 4.2). The tri-p-oxo Fe " clusters in MIL-100 are able to catalyze Friedel-Crafts benzylation reactions [44]. The tri-p-oxo Cr " clusters of MIL-101 are active for the cyanosilylation of benzaldehyde. This reaction is a popular test reaction in the MOF Hterature as a probe for catalytic activity an example has already been given above for [Cu3(BTC)2] [15]. In fact, the very first demonstration of the catalytic potential of MOFs had aheady been given in 1994 for a two-dimensional Cd bipyridine lattice that catalyzes the cyanosilylation of aldehydes [56]. A continuation of this work in 2004 for reactions with imines showed that the hydrophobic surroundings of the framework enhance the reaction in comparison with homogeneous Cd(pyridine) complexes [57]. The activity of MIL-lOl(Cr) is much higher than that of the Cd lattices, but in subsequent reaction rans the activity decreases [58]. A MOF with two different types of open Mn sites with pores of 7 and 10 A catalyzes the cyanosilylation of aromatic aldehydes and ketones with a remarkable reactant shape selectivity. This MOF also catalyzes the more demanding Mukaiyama-aldol reaction [59]. [Pg.81]

Another approach involved encapsulation of a bulky guanidine, N,N,N-tricyclohexyl-guanidine, in the super-cages of hydrophobic zeolite Y (Sercheli et ai, 1997). The resulting ship-in-a-bottle guanidine catalysed the aldol reaction of benzaldehyde with acetone to give 4-phenyl-4-hydroxybutan-2-one. [Pg.45]

In 1991, Kobayashi el al. prepared novel chiral S/N ligands for the tin-mediated aldol reaction of silyl enol ethers with aldehydes. As an example, the reaction of benzaldehyde afforded the expected syn aldol product as the major product with a good yield and an enantioselectivity of up to 92% ee (Scheme 10.26). Moreover, other aldehydes such as substituted benzaldehydes or aliphatic unsaturated aldehydes were converted into their corresponding aldol products with enantioselectivities of more than 90% ee. It was checked that the corresponding diamine ligands provided less active complexes for the same reactions. [Pg.314]

A DFT study found a corresponding TS to be the lowest energy.167 This study also points to the importance of the solvent, DMSO, in stabilizing the charge buildup that occurs. A further computational study analyzed the stereoselectivity of the proline-catalyzed aldol addition reactions of cyclohexanone with acetaldehyde, isobu-tyraldehyde, and benzaldehyde on the basis of a similar TS.168 Another study, which explored the role of proline in intramolecular aldol reactions, is discussed in the next section.169... [Pg.132]

Fig. 2.P25. Top Reaction energy profile for alanine-catalyzed aldol reaction of benzaldehyde and cyclohexanone. Bottom Diastereomeric transition structures. Reproduced from Angew. Chem. Int. Ed. Engl., 44, 7028 (2005), by permission of Wiley-VCH... Fig. 2.P25. Top Reaction energy profile for alanine-catalyzed aldol reaction of benzaldehyde and cyclohexanone. Bottom Diastereomeric transition structures. Reproduced from Angew. Chem. Int. Ed. Engl., 44, 7028 (2005), by permission of Wiley-VCH...
Sc(OTf)3 is an effective catalyst in aldol reactions of silyl enol ethers with aldehydes.49 Compared with other typical rare-earth-metal (Y, Yb) trifiates, Sc(OTf)3 has the strongest activity in the reaction of 1-trimethylsiloxycyclohexane with benzaldehyde in dichloromethane. Although the reaction scarcely proceeded at —78°C in the presence of Y(OTf)3 or Yb(OTf)3, the aldol adduct was obtained in 81% yield in the presence of Sc(OTf)3 (Scheme 9). [Pg.403]

Another example is the aldol reaction of benzaldehyde with the chiral eno-late (S)-72, from which a 3.5 1 mixture of diastereoisomers is obtained. When... [Pg.56]

Activities of various metallosilicates for Mukaiyama aldol reaction of benzaldehyde with silyl enol ether... [Pg.138]

In the present Ln(OTf)3-catalyzed aldol reactions in aqueous media, the amount of water strongly influences the yields of the aldol adducts. The effects of the amount of water on the yields in the model reaction of benzaldehyde with the silyl enol ether 2 in the presence of 10 mol% Yb(OTf)3 in THF were investigated (Eq. 2). The best yields are obtained when the amount of water present in THF is in the range 10-20 %. When the amount of water is increased, the yield begins to decrease The reaction system becomes a two phase one when the... [Pg.5]

The first promising asymmetric aldol reactions through phase transfer mode will be the coupling of silyl enol ethers with aldehydes utilizing chiral non-racemic quaternary ammonium fluorides,1371 a chiral version of tetra-n-butylammonium fluoride (TBAF). Various ammonium and phosphonium catalysts were tried138391 in the reaction of the silyl enol ether 41 of 2-methyl-l-tetralone with benzaldehyde, and the best result was obtained by use of the ammonium fluoride 7 (R=H, X=F) derived from cinchonine,1371 as shown in Scheme 14. [Pg.132]

Scheme 28. Proposed structure of intermediates in 135b Cu catalyzed aldol reaction of dienolsilane 411 and benzaldehyde (reaction monitored by in situ IR spectroscopy). [Adapted from (255).]... Scheme 28. Proposed structure of intermediates in 135b Cu catalyzed aldol reaction of dienolsilane 411 and benzaldehyde (reaction monitored by in situ IR spectroscopy). [Adapted from (255).]...
Tandem processes mediated by triethylborane involving conjugate addition to enones followed by aldol reaction are reported (Scheme 52, Eq. 52a). More recently, a tandem process involving addition of an isopropyl radical to an o ,/3-unsaturated oxime ether afforded an azaenolate intermediate that reacts with benzaldehyde in the presence of trimethylaluminum. The aldol product cyclizes to afford an isopropyl substituted y-bulyroloaclonc in 61% overall yield (Scheme 52) [116]. In these reactions, triethylborane is acting as a chain transfer reagent that delivers a boron enolate or azaenolate necessary for the aldolization process. [Pg.108]

Influence of Metal Center on Kinetic Aldol Reactions with Benzaldehyde... [Pg.49]

Acetals of benzaldehydes may undergo EGA-catalyzed aldol reactions also with alkyl enol ethers, (22) (R = alkyl), as nucleophiles [31] but in contrast to the reaction with enol silyl ethers the threo isomer is favored in this case. [Pg.461]

Table 1 summarizes the yields and selectivities of the addition of dienolate 2 to various aldehydes. It can be seen that the yield and enantioselectivity very much depend on the solvent, with THF being the best tested. The best results were obtained with pentanal (55% yield, 92% ee). On the other hand, when spiro dienolate 1 was used in these aldol reactions, benzaldehyde gave the best... [Pg.46]

Fig.l Possible transition states in the vinylogous aldol reaction of 8 with benzaldehyde... [Pg.48]

Wang et al. investigated the catalytic behavior of cation exchange resin supported lanthanide(III) salts of the general structure (31) (Scheme 4.15), prepared from Dowex, Amberlite, Amberlyst and other resins [99]. It turned out that Am-berlyst XN-1010 and Amberlyst 15 complexed best with lanthanides(III). Thus, among others, electrophilic substitution of indole with hexanal and Mukayiama-type aldol reaction of benzaldehyde with ketene silyl acetal proceeded in excellent yields under catalytic conditions (Scheme 4.16). [Pg.220]

For the mixed aldol reaction to be of value in synthetic work, it is necessary to restrict the number of combinations. This can be accomplished as follows. First, if one of the materials has no a-hydrogens, then it cannot produce an enoiate anion, and so cannot function as the nucleophile. Second, in aldehyde plus ketone combinations, the aldehyde is going to be a better electrophile, so reacts preferentially in this role. A simple example of this approach is the reaction of benzaldehyde with acetone under basic conditions. Such reactions are synthetically important as a means of increasing chemical complexity by forming new carbon-carbon bonds. [Pg.361]


See other pages where Benzaldehyde aldol reactions is mentioned: [Pg.876]    [Pg.1287]    [Pg.288]    [Pg.133]    [Pg.273]    [Pg.118]    [Pg.1088]    [Pg.444]    [Pg.7]    [Pg.50]    [Pg.120]    [Pg.53]    [Pg.63]   
See also in sourсe #XX -- [ Pg.221 ]




SEARCH



Benzaldehyde aldolization

Benzaldehyde, reactions

Benzaldehydes aldol reactions

Benzaldehydes reaction

© 2024 chempedia.info