Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum enolates

The achiral molybdenum enolate 2 reacts with benzophenone and benzaldehyde at —78 °C to yield the x,/i-unsaturated molybdenum-acyl complexes34, which presumably arise via elimination of hydroxide from unobserved aldolate intermediates such as 3. No examples of such aldol reactions with complexes that are chiral at molybdenum have been reported. [Pg.561]

E. Vedejs (1978) developed a general method for the sterically controlled electrophilic or-hydroxylation of enolates. This uses a bulky molybdenum(VI) peroxide complex, MoO(02)2(HMPTA)(Py), which is rather stable and can be stored below 0 °C. If this peroxide is added to the enolate in THF solution (base e.g. LDA) at low temperatures, oneO—O bond is broken, and a molybdyl ester is formed. Excess peroxide is quenched with sodium sulfite after the reaction has occurred, and the molybdyl ester is cleaved to give the a-hydroxy car-... [Pg.121]

Stable enolates such as diethyl malonate anions react with allyl sulfones (or acetates) in the presence of nickel complexes to give a mixture of the a- and /-product83. The regioselectivity is generally poor in the nickel-catalyzed reaction, but the molybdenum-catalyzed reaction is selective for alkylation at the more substituted allylic site, thereby creating a quaternary carbon center84. [Pg.878]

Ketones and carboxylic esters can be a hydroxylated by treatment of their enolate forms (prepared by adding the ketone or ester to LDA) with a molybdenum peroxide reagent (MoOs-pyridine-HMPA) in THF-hexane at -70°C. The enolate forms of amides and estersand the enamine derivatives of ketones can similarly be converted to their a hydroxy derivatives by reaction with molecular oxygen. The M0O5 method can also be applied to certain nitriles. Ketones have also been Qc hydroxylated by treating the corresponding silyl enol ethers with /n-chloroperoxy-... [Pg.915]

Z,Z)-l,4-Dialkoxy-l,3-dienes can be readily prepared from propargyl ethers and molybdenum carbene complexes (equation 185)307. High stereoselectivity in this reaction may be due to the formation of stable vinyl hydride complex with the enol ether. [Pg.465]

Recently, Nicolaou and coworkers have devised a novel, one-pot strategy for the direct transformation of acyclic olefinic esters to cyclic enol ethers [34]. Unlike the molybdenum alkylidene 1 (see Sect. 3.2), initial reaction between the Tebbe reagent 93 and an olefinic ester results in rapid carbonyl olefination to afford a diene intermediate. Subsequent heating initiates RCM to afford the desired cyclic product (Scheme 17). [Pg.106]

An alternative approach involves a two-step procedure, in which carbonyl olefination, using the Tebbe reagent 93, generates an acyclic enol ether-olefin (Scheme 16). In this case, subsequent RCM using molybdenum alkylidene 1 proceeds to give cyclic enol ethers. An efficient, one-pot carbonyl olefination-RCM approach has been developed by Nicolaou et al. for the formation of cyclic enol... [Pg.111]

Molybdenum complexes A (Figure 3.46) react efficiently with terminal and internal alkenes in toluene (e.g. 500 eq. Z-2-pentene are metathesized in 2 min at 25 °C 20 eq. of styrene in 2 h at 25 °C). These catalysts also oligomerize 2,4-hexadiene [808] and 1,5-hexadiene [809] and promote RCM of enol ethers. Isomerization of alkenes by catalysts A is a potential catalytic side-reaction [810-812]. [Pg.143]

Ruthenium complexes B also undergo fast reaction with terminal alkenes, but only slow or no reaction with internal alkenes. Sterically demanding olefins such as, e.g., 3,3-dimethyl-l-butene, or conjugated or cumulated dienes cannot be metathesized with complexes B. These catalysts generally have a higher tendency to form cyclic oligomers from dienes than do molybdenum-based catalysts. With enol ethers and enamines irreversible formation of catalytically inactive complexes occurs [582] (see Section 2.1.9). Isomerization of allyl ethers to enol ethers has been observed with complexes B [582]. [Pg.144]

A complementary route to carbohydrate-based oxepines was developed by the McDonald group.67 It is based on the endo-selective cycloisomerization of alkynyl alcohols in the presence of molybdenum or tungsten catalysts to give the cyclic enol... [Pg.145]

Other procedures for a oxidation of ketones are based on prior generation of the enolate. The most useful oxidant in these procedures is a molybdenum compound, MoOs-pyridine-HMPA, which is prepared by dissolving M0O3 in hydrogen peroxide, followed by addition of HMPA. This reagent oxidizes the enolates of aldehydes, ketones, esters, and lactones to the corresponding a-hydroxy compound.189 190 191... [Pg.798]

Hydridotris(3,5-dimethyl-l-pyrazolyl)borate]molybdenum-(i72-acyl) complexes, such as 1, are deprotonated by butyllithium or potassium hydride to generate enolate species, such as 488.8> jjie overa]] structure of these chiral complexes is similar to that of the iron and rhenium complexes discussed earlier the hydridotris(3,5-dimethyl-l-pyrazolyl)borate ligand is iso valent to the cyclopentadienyl ligand, occupying three metal coordination sites. However, several important differences must be taken into account when a detailed examination of the stereochemical outcome of deprotonation-alkylation processes is undertaken. [Pg.959]

The molybdenum-acyl enolate 4 has been characterized spectroscopically by NMR and has been reported to exist as a single (observable) isomer88. Extended Hiickel calculations on model complexes suggest that a conformation similar to A is most favorable for enolates such as 488. The deprotonated di-hapto acyl ligand may also be described as a 2-(C,0)-ketene ligand both the ketene and enolate terminology appear in the literature. [Pg.961]

Related, achiral cc,/ -unsaturated molybdenum-( 2-acyl) complexes, such as 8, have been shown to undergo nucleophilic 1,4-conjugatc addition upon treatment with sodium borohy-dride or methyllithium to generate enolate species, such as 9 (produced by addition of hydride). Subsequent alkylation by iodomethane provides the a-alkylated product 1088. Extension of this tandem Michael addition-alkylation sequence to nonracemic molybdenum species has not yet been reported. [Pg.962]

Other methods for a-hydroxy ketone synthesis are addition of O2 to an enolate followed by reduction of the a-hydroperoxy ketone using triethyl phosphite 9 the molybdenum peroxide-pyridine-HMPA oxidation of enolates 10 photooxygenation of enol ethers followed by triphenylphosphine reduction 11 the epoxidation of trimethyl silyl enol ethers by peracid 1 - the oxidation of trimethylsilyl enol ethers by osmium tetroxide in N-methylmorpholine N-... [Pg.142]

Molybdenum-peroxo compounds have been shown to achieve a variety of selective oxidations they a-hydroxylate enolizable ketones, presumably via epoxidation of the enolate (equation 27) 163 they cause Baeyer-Villiger lactonization of cyclic ketones, probably via the formation of five-membered trioxametallacycles (equation 28) 164 they oxidize alcohols to carbonyl compounds... [Pg.331]

The decomposition of the peroxometallacycle (72a) or (72b) occurs in a way different from that previously shown to occur in the epoxidation of alkenes by molybdenum-peroxo complexes (equation 26). The three possibilities are shown in equations (58)-(60) and involve (a) a [C-/6, C-a] hydride shift which directly produces the methyl ketone and the rhodium-oxo complex, or the hydroxo species from (72b equation 58) (b) a [C-/3,0-/3] hydride shift which gives enol (equation... [Pg.340]


See other pages where Molybdenum enolates is mentioned: [Pg.250]    [Pg.1134]    [Pg.166]    [Pg.164]    [Pg.104]    [Pg.106]    [Pg.111]    [Pg.301]    [Pg.106]    [Pg.163]    [Pg.165]    [Pg.961]    [Pg.31]    [Pg.130]    [Pg.699]    [Pg.77]    [Pg.654]    [Pg.294]    [Pg.193]    [Pg.182]    [Pg.351]    [Pg.654]   
See also in sourсe #XX -- [ Pg.4 , Pg.64 , Pg.102 ]




SEARCH



Molybdenum enolates aldol reaction

Molybdenum enolates synthesis and reaction

© 2024 chempedia.info