Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates alkylation with

The use of the aldol condensation to synthesize y-amino-p-hydroxy acids suffers from several drawbacks, such as possible racemization either of the initial carboxy group during its transformation to the a-amino aldehyde, or during any subsequent manipulations of the sensitive CHO moiety. An alternative route involves the direct activation of the carboxy group of the N-protected a-amino acids 30 followed by alkylation with enolates 17 to produce the corresponding p-oxo esters 31.[36 521 The P-oxo esters can be selectively reduced under various conditions to produce diastereomeric mixtures of the target compounds 18 but with retention of the chirality of the initial a-amino acid (Scheme 8). [Pg.575]

P—C bond formation. Alkenyldiarylphosphines are formed when At2PH are alkylated with enol triflates. Cocatalysis by Pd(0) and Cu(I) species is effective for accomplishing P-arylation of ArP(H)Me-borane complexes. ... [Pg.325]

Alkylation of Enolates (condensation of enolates with alkyl halides and epoxides) Comprehensive Organic Synthesis 1991, vol. 3, 1. [Pg.74]

Lithium dialkylamides are excellent bases for making ketone enolates as well Ketone enolates generated m this way can be alkylated with alkyl halides or as illus trated m the following equation treated with an aldehyde or a ketone... [Pg.904]

Inductive and resonance stabilization of carbanions derived by proton abstraction from alkyl substituents a to the ring nitrogen in pyrazines and quinoxalines confers a degree of stability on these species comparable with that observed with enolate anions. The resultant carbanions undergo typical condensation reactions with a variety of electrophilic reagents such as aldehydes, ketones, nitriles, diazonium salts, etc., which makes them of considerable preparative importance. [Pg.166]

This procedure illustrates a new method for the preparation of 6-alkyl-a,g-unsaturated esters by coupling lithium dialkylcuprates with enol phosphates of g-keto esters. The procedure for the preparation of methyl 2-oxocyclohexanecarboxylate described in Part A Is based on one reported by Ruest, Blouin, and Deslongcharaps. Methyl 2-methyl-l-cyc1ohexene-l-carboxylate has been prepared by esterification of the corresponding acid with dlazomethane - and by reaction of methyl 2-chloro-l-cyclohexene-l-carboxyl ate with lithium dimethylcuprate. -... [Pg.21]

The enolate of dimethyl trifluoromethylmalonate, formed by the action of cesium fluonde [II9] or of an electrolytically generated pyrrolidone anion [120], can be alkylated with methyl iodide (equation 103)... [Pg.473]

In the alkylation of enolate anions, a mixture of mono- and polyalky lation produets is usually obtained, and when enolization of a di-a-methylene ketone is possible toward both sides, a mixture of di-a- and a,a -dialkylation products ean be expeeted. Thus the enamine alkylation sequenee beeomes partieularly attractive when eontrolled monoalkylation is imperative beeause of difficulties in separation of a mixture of alkylation produets. One of its first synthetie applications was in the reaetions of /8-tetralones with alkyl halides. Yields in exeess of 80% were usually found 238-243) in these reaetions, which make valuable intermediates for steroid and diterpene syntheses more aecessible. [Pg.347]

Alkylation of enamines with epoxides or acetoxybromoalkanes provided intermediates for cyclic enol ethers (668) and branched chain sugars were obtained by enamine alkylation (669). Sodium enolates of vinylogous amides underwent carbon and nitrogen methylation (570), while vicinal endiamines formed bis-quaternary amonium salts (647). Reactions of enamines with a cyclopropenyl cation gave alkylated imonium products (57/), and 2-benzylidene-3-methylbenzothiazoline was shown to undergo enamine alkylation and acylation (572). A cyclic enamine was alkylated with methylbromoacetate and the product reduced with sodium borohydride to the key intermediate in a synthesis of the quebrachamine skeleton (57i). [Pg.357]

The problem of nitrogen alkylation of enamines, which one encounters with alkyl halides, is of no consequence in alkylations with positively activated olefins, since the generation of amonium salts can be expected to be reversible in these cases. Thus such enamine alkylations are obviously attractive to the synthetic chemist. Their particular importance, however, arises from avoidance of the serious obstacles often found with parallel enolate anion reactions. [Pg.359]

Alkyl-1,4-dihydropyridines on reaction with peracids undergo either extensive decomposition or biomimetic oxidation to A-alkylpyridinum salts (98JOC10001). However, A-methoxycarbonyl derivatives of 1,4- and 1,2-dihydro-pyridines (74) and (8a) react with m-CPBA to give the methyl tmns-2- 2>-chlorobenzoyloxy)-3-hydroxy-1,2,3,4-tetrahydropyridine-l-carboxylate (75) and methyl rran.s-2-(3-chlorobenzoyloxy)-3-hydroxy-l,2,3,6-tetrahydropyridine-l-carboxylate (76) in 65% and 66% yield, respectively (nonbiomimetic oxidation). The reaction is related to the interaction of peracids with enol ethers and involves the initial formation of an aminoepoxide, which is opened in situ by m-chlorobenzoic acid regio- and stereoselectively (57JA3234, 93JA7593). [Pg.285]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

An important stage in the synthesis has been reached. It was anticipated that cleavage of the trimethylsilyl enol ether in 18 using the procedure of Binkley and Heathcock18 would regiospecifically furnish the thermodynamic (more substituted) cyclopentanone enolate, a nucleophilic species that could then be alkylated with iodo-diyne 17. To secure what is to become the trans CD ring junction of the steroid nucleus, the diastereoisomer in which the vinyl and methyl substituents have a cis relationship must be formed. In the... [Pg.162]

Therefore, transesterification reactions frequently fail when R is tertiary, since this type of substrate most often reacts by alkyl-oxygen cleavage. In such cases, the reaction is of the Williamson type with OCOR as the leaving group (see 10-14). With enol esters, the free alcohol is the enol of a ketone, so such esters easily... [Pg.487]

Simple 1,2,4-triazole derivatives played a key role in both the synthesis of functionalized triazoles and in asymmetric synthesis. l-(a-Aminomethyl)-1,2,4-triazoles 4 could be converted into 5 by treatment with enol ethers <96SC357>. The novel C2-symmetric triazole-containing chiral auxiliary (S,S)-4-amino-3,5-bis(l-hydroxyethyl)-l,2,4-triazole, SAT, (6) was prepared firmn (S)-lactic acid and hydrazine hydrate <96TA1621>. This chiral auxiliary was employed to mediate the diastereoselective 1,2-addition of Grignard reagents to the C=N bond of hydrazones. The diastereoselective-alkylation of enolates derived from ethyl ester 7 was mediated by a related auxiliary <96TA1631>. [Pg.162]

Additions of aryl- or alkyllithium reagents to N-silylated formamides 508 give the imines 509 in 55-80% yield [90, 91] some of these imines can subsequently be converted into the corresponding //-lactams by reaction with enolates of alkyl butyrates [92]. Conversion of N-silylated butyrolactam 388 into cyclic Schiff bases such as 390, by reaction with methyl- or butyllithium, via O-silylated butyrolactam 389, is discussed in Section 4.8 (Scheme 5.28). [Pg.97]

Some sugar residues in bacterial polysaccharides are etherified with lactic acid. The biosynthesis of these involves C)-alkylation, by reaction with enol-pyruvate phosphate, to an enol ether (34) of pyruvic acid, followed by reduction to the (R) or (5) form of the lactic acid ether (35). The enol ether may also react in a different manner, giving a cyclic acetal (36) of pyruvic acid. [Pg.303]

The rate of alkylation of enolate ions is strongly dependent on the solvent in which the reaction is carried out.41 The relative rates of reaction of the sodium enolate of diethyl n-butylmalonate with n-butyl bromide are shown in Table 1.3. Dimethyl sulfoxide (DMSO) and iV,Ai-dimethylformamide (DMF) are particularly effective in enhancing the reactivity of enolate ions. Both of these are polar aprotic solvents. Other... [Pg.17]

Ester enolates are somewhat less stable than ketone enolates because of the potential for elimination of alkoxide. The sodium and potassium enolates are rather unstable, but Rathke and co-workers found that the lithium enolates can be generated at -78° C.69 Alkylations of simple esters require a strong base because relatively weak bases such as alkoxides promote condensation reactions (see Section 2.3.1). The successful formation of ester enolates typically involves an amide base, usually LDA or LiHDMS, at low temperature.70 The resulting enolates can be successfully alkylated with alkyl bromides or iodides. HMPA is sometimes added to accelerate the alkylation reaction. [Pg.31]

Several examples of conjugate addition of carbanions carried out under aprotic conditions are given in Scheme 2.24. The reactions are typically quenched by addition of a proton source to neutralize the enolate. It is also possible to trap the adduct by silylation or, as we will see in Section 2.6.2, to carry out a tandem alkylation. Lithium enolates preformed by reaction with LDA in THF react with enones to give 1,4-diketones (Entries 1 and 2). Entries 3 and 4 involve addition of ester enolates to enones. The reaction in Entry 3 gives the 1,2-addition product at —78°C but isomerizes to the 1,4-product at 25° C. Esters of 1,5-dicarboxylic acids are obtained by addition of ester enolates to a,(3-unsaturated esters (Entry 5). Entries 6 to 8 show cases of... [Pg.186]

Enantioselectivity can also be based on structural features present in the reactants. A silyl substituent has been used to control stereochemistry in both cyclic and acyclic systems. The silyl substituent can then be removed by TBAF.326 As with enolate alkylation (see p. 32), the steric effect of the silyl substituent directs the approach of the acceptor to the opposite face. [Pg.196]

Nitroethylene is extremely reactive and sensitive to strong basic conditions, but various ketone and ester enolates undergo alkylation with nitroethylene at low temperature (Eq. 4.5165 and Table 4.1). [Pg.87]

In the general context of donor/acceptor formulation, the carbonyl derivatives (especially ketones) are utilized as electron acceptors in a wide variety of reactions such as additions with Grignard reagents, alkyl metals, enolates (aldol condensation), hydroxide (Cannizzaro reaction), alkoxides (Meerwein-Pondorff-Verley reduction), thiolates, phenolates, etc. reduction to alcohols with lithium aluminum hydride, sodium borohydride, trialkyltin hydrides, etc. and cyloadditions with electron-rich olefins (Paterno-Buchi reaction), acetylenes, and dienes.46... [Pg.212]


See other pages where Enolates alkylation with is mentioned: [Pg.296]    [Pg.205]    [Pg.150]    [Pg.56]    [Pg.63]    [Pg.201]    [Pg.282]    [Pg.548]    [Pg.552]    [Pg.63]    [Pg.201]    [Pg.282]    [Pg.2]    [Pg.30]    [Pg.261]    [Pg.128]    [Pg.113]    [Pg.253]    [Pg.340]    [Pg.78]    [Pg.101]    [Pg.287]    [Pg.21]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 ]




SEARCH



Enol alkyl

Enolate alkylation

Enolates alkylation

Enols alkylation

© 2024 chempedia.info