Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basicity Arrhenius

To find out if a solution is basic, Arrhenius wrote that ... [Pg.196]

This chapter sets the stage for all of the others by reminding us that the relationship between structure and properties is what chemistry is all about It begins with a review of Lewis structures moves to a discussion of the Arrhenius Brpnsted-Lowry and Lewis pictures of acids and bases and the effects of structure on acidity and basicity... [Pg.47]

The two basic laws of kinetics are the law of mass action for the rate of a reac tion and the Arrhenius equation for its dependence on temperature. Both of these are strictly empirical. They depend on the structures of the molecules, but at present the constants of the equations cannot be derived from the structures of reac ting molecules. For a reaction, aA + hE Products, the combined law is... [Pg.2071]

The experimental studies of a large number of low-temperature solid-phase reactions undertaken by many groups in 70s and 80s have confirmed the two basic consequences of the Goldanskii model, the existence of the low-temperature limit and the cross-over temperature. The aforementioned difference between quantum-chemical and classical reactions has also been established, namely, the values of k turned out to vary over many orders of magnitude even for reactions with similar values of Vq and hence with similar Arrhenius dependence. For illustration, fig. 1 presents a number of typical experimental examples of k T) dependence. [Pg.5]

Inert gas pressure, temperature, and conversion were selected as these are the critical variables that disclose the nature of the basic rate controlling process. The effect of temperature gives an estimate for the energy of activation. For a catalytic process, this is expected to be about 90 to 100 kJ/mol or 20-25 kcal/mol. It is higher for higher temperature processes, so a better estimate is that of the Arrhenius number, y = E/RT which is about 20. If it is more, a homogeneous reaction can interfere. If it is significantly less, pore diffusion can interact. [Pg.110]

Among other contributions of Arrhenius, the most important were probably in chemical kinetics (Chapter 11). In 1889 he derived the relation for the temperature dependence of reaction rate. In quite a different area in 1896 Arrhenius published an article, "On the Influence of Carbon Dioxide in the Air on the Temperature of the Ground." He presented the basic idea of the greenhouse effect, discussed in Chapter 17. [Pg.86]

Methyl- and 2,6-dimethylpyridine as catalysts with sterically hindered a-com-plexes give greater isotope effects (k2n/k2D up to 10.8). Such values are understandable qualitatively, since the basic center of these pyridine derivatives cannot easily approach the C-H group. The possibility of tunneling can be excluded for these reactions, as the ratio of the frequency factors 4h 4d and the difference in activation energies ED—EU (Arrhenius equation) do not have abnormal values. [Pg.360]

This expression corresponds to the Arrhenius equation (14.1) and basically provides the possibihty of calculating the preexponential factor (a calculation of is, in fact, not easy). It also shows that in the Arrhenius equation it will be more correct to use the parameter AG rather than A//. However, since AGt = Aff TASt, it follows that the preexponential factor of Eq. (14.4) will contain an additional factor exp(ASi/R) reflecting the entropy of formation of the transition state when the enthalpy is used in this equation. [Pg.241]

Any text on acids and bases would not be deemed complete if mention were not made of the extended definition of acids and bases that is embodied in the Lowry-Bronsted theory. The theory basically proposed a more general definition of acids and bases to overpower the limitations of the theory arising from the Arrhenius concept. [Pg.588]

The Arrhenius concept was of basic importance because it permitted quantitative treatment of a number of acid-base processes in aqueous solutions, i.e. the behaviour of acids, bases, their salts and mixtures of these substances in aqueous solutions. Nonetheless, when more experimental material was collected, particularly on reaction rates of acid-base catalysed processes, an increasing number of facts was found that was not clearly interpretable on the basis of the Arrhenius theory (e.g. in anhydrous acetone NH3 reacts with acids in the absence of OH- and without the formation of water). It gradually became clear that a more general theory was needed. Such a theory was developed in 1923 by J. N. Br0nsted and, independently, by T. M. Lowry. [Pg.56]

The Br0nsted theory expands the definition of acids and bases to allow us to explain much more of solution chemistry. For example, the Brpnsted theory allows us to explain why a solution of ammonium chloride tests acidic and a solution of sodium acetate tests basic. Most of the substances that we consider acids in the Arrhenius theory are also acids in the Bronsted theory, and the same is true of bases. In both theories, strong acids are those that react completely with water to form ions. Weak acids ionize only slightly. We can now explain this partial ionization as an equilibrium reaction of the ions, the weak acid, and the water. A similar statement can be made about weak bases ... [Pg.302]

A method is described for fitting the Cole-Cole phenomenological equation to isochronal mechanical relaxation scans. The basic parameters in the equation are the unrelaxed and relaxed moduli, a width parameter and the central relaxation time. The first three are given linear temperature coefficients and the latter can have WLF or Arrhenius behavior. A set of these parameters is determined for each relaxation in the specimen by means of nonlinear least squares optimization of the fit of the equation to the data. An interactive front-end is present in the fitting routine to aid in initial parameter estimation for the iterative fitting process. The use of the determined parameters in assisting in the interpretation of relaxation processes is discussed. [Pg.89]

According to the Arrhenius theory of acids and bases, the acidic species in water is the solvated proton (which we write as H30+). This shows that the acidic species is the cation characteristic of the solvent. In water, the basic species is the anion characteristic of the solvent, OH-. By extending the Arrhenius definitions of acid and base to liquid ammonia, it becomes apparent from Eq. (10.3) that the acidic species is NH4+ and the basic species is Nl I,. It is apparent that any substance that leads to an increase in the concentration of NH4+ is an acid in liquid ammonia. A substance that leads to an increase in concentration of NH2- is a base in liquid ammonia. For other solvents, autoionization (if it occurs) leads to different ions, but in each case presumed ionization leads to a cation and an anion. Generalization of the nature of the acidic and basic species leads to the idea that in a solvent, the cation characteristic of the solvent is the acidic species and the anion characteristic of the solvent is the basic species. This is known as the solvent concept. Neutralization can be considered as the reaction of the cation and anion from the solvent. For example, the cation and anion react to produce unionized solvent ... [Pg.333]

The transition between the two centuries also saw the discovery and development of two concepts essential to the further development of the understanding of soil chemistry. One was the discovery by J. J. Thomson of the electron, a subatomic particle. This work occurred around 1897 and culminated in the determination of the electron charge-to-mass ratio, which made it possible to develop the idea of ions [21], This was basic to the concept of ions discussed and developed by Svante Arrhenius in a series of lectures given at the University of California at Berkeley in 1907 [22], In this series of lectures, he clearly describes ions of hydrogen and chlorine. The basic idea of a hydrogen ion and its application to enzyme chemistry would be further developed by S. Sorenson [13],... [Pg.26]

Our goal in this chapter is to help you understand the equilibrium systems involving acids and bases. If you don t recall the Arrhenius acid-base theory, refer to Chapter 4 on Aqueous Solutions. You will learn a couple of other acid-base theories, the concept of pH, and will apply those basic equilibrium techniques we covered in Chapter 14 to acid-base systems. In addition, you will need to be familiar with the log and 10 functions of your calculator. And, as usual, in order to do well you must Practice, Practice, Practice. [Pg.220]

The Arrhenius theory also has limitations for explaining certain reactions. For example, aqueous solutions of ammonia are basic. They react with acids in neutralization reactions, even though ammonia does not contain the hydroxide ion. Many aqueous solutions of salts with no hydroxide ions are basic, too. Some reactions take place without any liquid solvent. For example, ammonium chloride can be formed by the reaction between ammonia and hydrogen chloride, which are both gases ... [Pg.379]

Unlike the Arrhenius theory, the Bronsted-Lowry theory of acids and bases can explain the basic properties of ammonia when it dissolves in water. See Figure 8.4. [Pg.381]

Arrhenius theory (1887) the theory stating that acids and bases are defined in terms of their structure and the ions produced when they dissolve in water defines an acid as a substance that produces hydrogen ions in water and a base as a substance that produces hydroxide ions in water (8.1) asymmetrical alkene an alkene that has different groups on either side of the double bond (2.2) atom the basic unit of an element, which still retains the element s properties (Review)... [Pg.602]

In 1848 du Bois-Reymond [21] suggested that the surfaces of biological formations have a property similar to the electrode of a galvanic cell and that this is the source of bioelectric phenomena observed in damaged tissues. The properties of biological membranes could not, however, be explained before at least the basic electrochemistry of simple models was formulated. The thermodynamic relationships for membrane equilibria were derived by Gibbs in 1875 [29], but because the theory of electrolyte solutions was formulated first by Arrhenius as late as 1887, Gibbs does not mention either ions or electric potentials. [Pg.7]

This quantity describes how much the temperature dependence of structural relaxation deviates from an Arrhenius behavior, which is the most basic concept embodied by the term fragility. Within AG theory, this quantity exactly equals... [Pg.211]

Each of the three definitions expands our concept of acids and bases. Arrhenius basic definition is adequate for understanding many of the properties of acids and bases. It is important to recognize, though, that acids and bases are not fixed labels that can be applied to a substance. Bronsted-Lowry and Lewis showed that acid-base characteristics are dependent on the reactions that take place between substances. A... [Pg.159]

The Arrhenius acid-base theory is insufficient to explain the acidic or basic properties of some substances, such as SO2 and NH3, since these don t have H" and OH ions in their structures. For these molecules, another theory must be applied, since the Arrhenius acid-base theory can only be applied to aqueous solutions. [Pg.106]

In chemical reaction kinetics, the basic measurement is that of rate (v) per unit area as a function of temperature, with application of the classical Arrhenius equation, v = Ae E/RT Electrochemical reactions also vaiy with temperature (see Section 7.5.14). However, the basic measurement for electrochemical kinetics is the rate as a function of potential36 at constant temperature, with application of the corresponding Tafel equation, v = A e ar F/RT. [Pg.398]

Tafel s law is the primary law of electrode kinetics, in the sense that Arrhenius law is the basic law of thermal reaction. It applies universally to all processes that are controlled in rate by the interfacial transfer of electrons or by a rate-determining surface reaction that may be coupled to the interfacial electron [Fig. 9.25(a)]. Redox reactions without surface intermediates demonstrate Tafel s law well [Fig. 9.25(b)]. [Pg.791]


See other pages where Basicity Arrhenius is mentioned: [Pg.373]    [Pg.373]    [Pg.252]    [Pg.373]    [Pg.373]    [Pg.252]    [Pg.1045]    [Pg.251]    [Pg.182]    [Pg.524]    [Pg.99]    [Pg.6]    [Pg.249]    [Pg.585]    [Pg.16]    [Pg.288]    [Pg.127]    [Pg.229]    [Pg.125]    [Pg.159]    [Pg.238]    [Pg.224]    [Pg.286]    [Pg.388]    [Pg.507]   
See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.134 ]

See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Arrhenius sticks to the basics

© 2024 chempedia.info