Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azides phase

Nucleophilic substitution by azide ion on an alkyl halide (Sections 8 1 8 13) Azide ion IS a very good nucleophile and reacts with primary and secondary alkyl halides to give alkyl azides Phase transfer cata lysts accelerate the rate of reaction... [Pg.927]

Azide anion, which is more nucleophilic than amines, reacts with alkyl halides and activated alcohols giving the corresponding alkyl azides. Phase-transfer conditions can also be utilized. For details, readers are referred to a comprehensive review. Alkyl azides thus formed can be readily transformed into primary amines by a variety of reagents or reaction systems which involve catalytic hydrogenation, LiAlH4, NaBH4 under phase-transfer conditions, NaBH /THF/MeOH, PhsP ... [Pg.76]

A newer and equally effective way of swapping azides with halides (bromines or iodines) is in the use of phase transfer catalysts [68]. Strike wouldn t expect an underground chemist to purchase the exotic catalyst Aliquat 336 which the investigators in this reference used to get yields approaching 100% but an alternative catalyst of... [Pg.153]

Recently, a nice bee named Quirks submitted an article from our new, favorite patron researcher Rajender S. Varma. This time the good doctor is tackling our azide problem with another novel use of his clay phase transfer catalyst system. This is just going to be... [Pg.155]

The major disadvantage of solid-phase peptide synthesis is the fact that ail the by-products attached to the resin can only be removed at the final stages of synthesis. Another problem is the relatively low local concentration of peptide which can be obtained on the polymer, and this limits the turnover of all other educts. Preparation of large quantities (> 1 g) is therefore difficult. Thirdly, the racemization-safe methods for acid activation, e.g. with azides, are too mild (= slow) for solid-phase synthesis. For these reasons the convenient Menifield procedures are quite generally used for syntheses of small peptides, whereas for larger polypeptides many research groups adhere to classic solution methods and purification after each condensation step (F.M. Finn, 1976). [Pg.237]

Lead Azide. The azides belong to a class of very few useflil explosive compounds that do not contain oxygen. Lead azide is the primary explosive used in military detonators in the United States, and has been intensively studied (see also Lead compounds). However, lead azide is being phased out as an ignition compound in commercial detonators by substances such as diazodinitrophenol (DDNP) or PETN-based mixtures because of health concerns over the lead content in the fumes and the explosion risks and environmental impact of the manufacturing process. [Pg.10]

Nitrogen and sodium do not react at any temperature under ordinary circumstances, but are reported to form the nitride or azide under the influence of an electric discharge (14,35). Sodium siHcide, NaSi, has been synthesized from the elements (36,37). When heated together, sodium and phosphoms form sodium phosphide, but in the presence of air with ignition sodium phosphate is formed. Sulfur, selenium, and tellurium form the sulfide, selenide, and teUuride, respectively. In vapor phase, sodium forms haHdes with all halogens (14). At room temperature, chlorine and bromine react rapidly with thin films of sodium (38), whereas fluorine and sodium ignite. Molten sodium ignites in chlorine and bums to sodium chloride (see Sodium COMPOUNDS, SODIUM HALIDES). [Pg.163]

For long-term column storage, it is recommended to replace the mobile phase with distilled water with 0.05% sodium azide. The columns can then be stored at room temperature. For shorter storage times, e.g., a long weekend, the column should be stored in the mobile phase after making sure that the end plugs of the columns have been tightened well. [Pg.346]

In order to prepare thin fdms of (SN) on plastic or metal surfaces, several processing techniques have been investigated, e.g., the electroreduction of [SsNs]" salts. Powdered (SN) is prepared by the reaction of (NSC1)3 with trimethylsilyl azide in acetonitrile/ The sublimation of (SN) at 135°C and at pressure of 3 x 10 Torr. produces a gas-phase species, probably the cyclic [SsNs] radical, that reforms the polymer as epitaxial fibres upon condensation/... [Pg.279]

Arylpentazoles can be prepared by adding an aqueous solution of azide to a mixture of an aryldiazonium chloride, aqueous methanol, and petroleum ether at —40 to —20° with stirring. The pure aryl-pentazole (see Table I) crystallizes from the two-phase reaction mixture the inorganic impurities remain in the aqueous methanol and the organic impurities in the petroleum ether. [Pg.374]

Interest in the mechanism and product distribution of thermal and photochemical transformations of aryl azides led to the isolation of some nitrogen-containing derivatives of heptafulvalene. Based on elemental analysis and spectroscopic data it has been suggested tentatively that the compound isolated following vapor-phase pyrolysis of azidopentafluoro-... [Pg.135]

Poly-1,2-1//-azepines, produced by gas-phase photopolymerization of aryl azides yield, after oxidation, electrically conducting films.103 By photolyzing 4-(pcntyloxy)phenyl azide in the gas phase, a flexible polyazepine is produced which can be deposited directly as a thin polymer film onto a suitable surface. [Pg.117]

Far superior yields of l-(arylsulfonyl)-l//-azepines 16 are now available by a one-pot synthesis involving the action of sodium azide on an arylsulfonyl chloride under solid-liquid phase-transfer conditions which prevents the formation of acidic sulfonamides and, hence, the ring-contraction process.75 This procedure also has the advantage of avoiding the use of high pressures and the isolation and handling of the potentially explosive sulfonyl azides. [Pg.142]

The variations of dielectric constant and of the tangent of the dielectric-loss angle with time provide information on the mobility and concentration of charge carriers, the dissociation of defect clusters, the occurrence of phase transitions and the formation of solid solutions. Techniques and the interpretation of results for sodium azide are described by Ellis and Hall [372]. [Pg.33]

Mechanical treatment alone may be sufficient to induce significant decomposition such processes are termed mechanochemical or tribo-chemical reactions and the topic has been reviewed [385,386]. In some brittle crystalline solids, for example sodium and lead azides [387], fracture can result in some chemical change of the substance. An extreme case of such behaviour is detonation by impact [232,388]. Fox [389] has provided evidence of a fracture initiation mechanism in the explosions of lead and thallium azide crystals, rather than the participation of a liquid or gas phase intermediate. The processes occurring in solids during the action of powerful shock waves have been reviewed by Dremin and Breusov [390]. [Pg.35]

Alkyl azides can be prepared by treatment of the appropriate halide with azide ion. ° Phase-transfer catalysis,ultrasound,and using reactive clays as a... [Pg.515]

The diazo transfer reaction between p-toluenesulfonyl azide and active methylene compounds is a useful synthetic method for the preparation of a-diazo carbonyl compounds. However, the reaction of di-tert-butyl malonate and p-toluenesulfonyl azide to form di-tert-butyl diazomalonate proceeded to the extent of only 47% after 4 weeks with the usual procedure." The present procedure, which utilizes a two-phase medium and methyltri-n-octylammonium chloride (Aliquat 336) as phase-transfer catalyst, effects this same diazo transfer in 2 hours and has the additional advantage of avoiding the use of anhydrous solvents. This procedure has been employed for the preparation of diazoacetoacetates, diazoacetates, and diazomalonates (Table I). Ethyl and ten-butyl acetoacetate are converted to the corresponding a-diazoacetoacetates with saturated sodium carbonate as the aqueous phase. When aqueous sodium hydroxide is used with the acetoace-tates, the initially formed a-diazoacetoacetates undergo deacylation to the diazoacetates. Methyl esters are not suitable substrates, since they are too easily saponified under these conditions. [Pg.35]

Phase transfer conditions are used as well for the preparation of azides.73... [Pg.232]

Tetrazolium salts have found use as phase transfer catalysts in the oxidation of benzaldehyde640 and toluene193 and the displacement reaction of acid chlorides with sodium azide.639... [Pg.278]

Reduction of azides is a classical approach to primary amine synthesis. Treatment of 17 with sodium azide in DMF or in THF/H2O mixtures in the presence of phase transfer catalysts effects a quantitative conversion to the corresponding polymeric azide, 27. Recently the reduction of azides to primary amines via hydrolysis of iminophosphoranes produced by interaction of the azide with triethyl phosphite was reported.30 Application of this technique to the azidomethyl polymer, 27, as shown below, failed to produce a soluble polyamine. [Pg.20]

Two other results will now be pointed out which presumably also require reinterpretation in the light of the reaction behavior of iminooxophosphoranes. Thus the gas phase pyrolysis of diphenylphosphoryl azide is reported to give monomeric 92 50) and the dehydrohalogenation of phenylphosphoric adamantylamidic chloride with methylhydrazine the heterocumulene 93 51), which is even considered resistant to water. Since partly correct analytical values are available, 92 and 93 may well be oligomers. [Pg.92]

The vapour-phase pyrolysis of benzenesulphonyl azide at 625 °C gave a 17.5% yield of azobenzene 71>, and a trace of the latter was also reported when the azide was heated in boiling cyclohexanone >. [Pg.34]

A vapour phase study of this azide showed it sometimes to explode when exposed to heat. [Pg.130]

Quaternary ammonium azides will displace halogens in a synthesis of alkyl azides. Dichloromethane has been used as a solvent, although this can slowly form diazido-methane which may be concentrated by distillation dining work-up, thereafter easily exploding [1]. An accident attributed to this cause is described, and acetonitrile recommended as a preferable solvent, supported polymeric azides, excess of which can be removed by filtration are also preferred in place of the tetrabutylam-monium salt [2]. A similar explosion was previously recorded when the quaternary azide was generated in situ from sodium azide and a phase transfer catalyst in a part aqueous system [3,4],... [Pg.160]


See other pages where Azides phase is mentioned: [Pg.76]    [Pg.131]    [Pg.76]    [Pg.131]    [Pg.185]    [Pg.10]    [Pg.41]    [Pg.347]    [Pg.824]    [Pg.381]    [Pg.265]    [Pg.232]    [Pg.489]    [Pg.109]    [Pg.263]    [Pg.1038]    [Pg.781]    [Pg.112]    [Pg.165]    [Pg.242]    [Pg.367]   
See also in sourсe #XX -- [ Pg.18 , Pg.331 ]




SEARCH



Phase transfer azides

Phase transition azides

© 2024 chempedia.info