Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Variants asymmetric

The scope of this asymmetric reaction is limited to aryl-substituted alkynes, and a-branched aldehydes provide the highest levels of asymmetric induction. [Pg.199]


The discussion of the catalytic, asymmetric variants will incorporate a significant emphasis on the interplay of mechanistic investigations and synthetic optimization studies to provide a unified picture of the cyclopropanation methods. Finally, recent insights provided by computational analysis of the transition structures for cyclopropanation will be discussed. [Pg.87]

The discovery of viable substrate-direction represents a major turning point in the development of the Simmons-Smith cyclopropanation. This important phenomenon underlies all of the asymmetric variants developed for the cyclopropanation. However, more information regarding the consequences of this coordinative interaction would be required before the appearance of a catalytic, asymmetric method. The first steps in this direction are found in studies of chiral auxiliary-based methods. [Pg.107]

These initial reports demonstrated that a catalytic asymmetric variant of the Simmons-Smith reaction could be developed. Although good yields and selectivities were obtained, the lack of a clear understanding of the origin of activation, the limited structural information on the active species and the absence of a stereochemical model made rational improvements difficult at best. The next... [Pg.126]

The Gabriel-Cromwell aziridine synthesis involves nucleophilic addition of a formal nitrene equivalent to a 2-haloacrylate or similar reagent [29]. Thus, there is an initial Michael addition, followed by protonation and 3-exo-tet ring-closure. Asymmetric variants of the reaction have been reported. N-(2-Bromo)acryloyl camphor-sultam, for example, reacts with a range of amines to give N-substituted (azir-idinyl)acylsultams (Scheme 4.23) [30]. [Pg.128]

The classical aza-Darzens reaction (between bromoenolates and imines) has been investigated by several groups in recent years, especially with respect to the design and execution of asymmetric variants. Both stoichiometric and catalytic methods have been studied thus, the reactions between N-Dpp imines and chiral ot-bromoenolates [49] (derived from Oppolzer s sultams Scheme 4.35) and between S-chiral sulfmylimines and achiral bromoenolates [50] (Scheme 4.36) have been reported. [Pg.133]

Azirines (three-membered cyclic imines) are related to aziridines by a single redox step, and these reagents can therefore function as precursors to aziridines by way of addition reactions. The addition of carbon nucleophiles has been known for some time [52], but has recently undergone a renaissance, attracting the interest of several research groups. The cyclization of 2-(0-tosyl)oximino carbonyl compounds - the Neber reaction [53] - is the oldest known azirine synthesis, and asymmetric variants have been reported. Zwanenburg et ah, for example, prepared nonracemic chiral azirines from oximes of 3-ketoesters, using cinchona alkaloids as catalysts (Scheme 4.37) [54]. [Pg.134]

A similar but asymmetric variant of the reaction, involving the radical addition of alkyl iodides and trialkylboranes to chiral azirine esters derived from 8-phenyl-menthol and camphorsultam, in the presence of a Cu(i) catalyst, has subsequently been reported [64]. The diastereoselectivity of the addition is variable (0-92% de)... [Pg.136]

Abstract This chapter is devoted to phosphinous amides, a particular class of tervalent aminophosphanes. First, attention is focused on their stability and synthetic procedures. Reports dealing with their prototropic equilibrium and main group chemistry are also considered. Last but not least the really important applications of these species as metal ligands in the field of catalysis are reviewed, including asymmetric variants. [Pg.77]

Asymmetric variants of these reactions are highly interesting since they provide access to chiral heterocycles. A recent comprehensive study by Stahl and coworkers reports the synthesis of various enantiopure [Pd( 4-C1)C1(NHC)]2 complexes and their application in asymmetric aza-Wacker cyclisations. The reactions generally proceed with low yields or enantioselectivity [43]. The best enantio-selectivity (63%) was achieved using complex 28 (Table 10.8). [Pg.248]

Bode and co-workers have extended the synthetic ntility of homoenolates to the formation of enantiomerically enriched IV-protected y-butyrolactams 169 from saccharin-derived cyclic sulfonylimines 167. While racemic products have been prepared from a range of P-alkyl and P-aryl substitnted enals and substitnted imi-nes, only a single example of an asymmetric variant has been shown, affording the lactam prodnct 169 with good levels of enantioselectivity and diastereoselectivity (Scheme 12.36) [71], As noted in the racemic series (see Section 12.2.2), two mechanisms have been proposed for this type of transformation, either by addition of a homoenolate to the imine or via an ene-type mechanism. [Pg.282]

Nair and co-workers have demonstrated NHC-catalysed formation of spirocyclic diketones 173 from a,P-unsaturated aldehydes 174 and snbstitnted dibenzylidine-cyclopentanones 175. Where chalcones and dibenzylidene cyclohexanones give only cyclopentene products (as a result of P-lactone formation then decarboxylation), cyclopentanones 175 give only the spirocychc diketone prodncts 173 [73]. Of particular note is the formation of an all-carbon quaternary centre and the excellent level of diastereoselectivity observed in the reaction. An asymmetric variant of this reaction has been demonstrated by Bode using chiral imidazolium salt 176, obtaining the desymmetrised product with good diastereo- and enantioselectivity, though in modest yield (Scheme 12.38) [74],... [Pg.283]

A formal [3h-2] cycloaddition reaction with homoenolates has also been realised with nitrogen-based electrophiles such as A-acyl-A -aryldiazenes 180. Pyrazolidi-nones 178 can be prepared from enals 27 and acyldiazenes 180, as demonstrated by Scheldt and Chan [75]. An example of the asymmetric variant demonstrates excellent levels of enantioselectivity in this reaction (90% ee) (Scheme 12.39). [Pg.283]

An asymmetric variant of this reaction was developed using chiral Pd complex 111 with either silanes or disiloxanes [66-68]. Both relative and absolute stereochemistries were controlled in this system and good yields (60-85%) were obtained after oxidation (Eq. 18). Formation of the silane-containing product was inhibited by the presence of water due to competitive formation of the palladium hydrides and silanols [68]. The use of disiloxanes as reductants, however, provided expedient oxidation to the alcohol products without decreasing the isolated yields enantioselectivity was 5-15% lower in this more robust system [66]. Benzhydryldimethylsilane proved to be a good compromise between high yield and facile oxidation [66]. Palladium com-... [Pg.240]

Metal-catalyzed C-H bond formation through isomerization, especially asymmetric variant of that, is highly useful in organic synthesis. The most successful example is no doubt the enantioselective isomerization of allylamines catalyzed by Rh(i)/TolBINAP complex, which was applied to the industrial synthesis of (—)-menthol. A highly enantioselective isomerization of allylic alcohols was also developed using Rh(l)/phosphaferrocene complex. Despite these successful examples, an enantioselective isomerization of unfunctionalized alkenes and metal-catalyzed isomerization of acetylenic triple bonds has not been extensively studied. Future developments of new catalysts and ligands for these reactions will enhance the synthetic utility of the metal-catalyzed isomerization reaction. [Pg.98]

When 1,3-dienes containing a tethered alcohol are subjected to Wacker-type reactions, the initial intramolecular oxypalladation event creates a 7r-allylpalladium species, which can then undergo an additional bond-forming process to effect an overall 1,4-difunctionalization of the diene with either cis- or // -stereochemistry (Scheme 18).399 An array of substrate types has been shown to participate in this reaction to generate both five- and six-membered fused or ro-oxacycles.435-437 Employing chiral benzoquinone ligands, progress toward the development of an asymmetric variant of this reaction has also been recorded, albeit with only modest levels of enantioselectivity (up to 55% ee).438... [Pg.682]

One of the first attempts to extend polymer-assisted epoxidations to asymmetric variants were disclosed by Sherrington et al. The group employed chiral poly(tartrate ester) hgands in Sharpless epoxidations utilizing Ti(OiPr)4 and tBuOOH. However, yields and degree of stereoselection were only moderate [76]. In contrast to most concepts, Pu and coworkers applied chiral polymers, namely polymeric binaphthyl zinc to effect the asymmetric epoxidation of a,/9-unsaturated ketones in the presence of terPbutyl hydroperoxide (Scheme 4.11). [Pg.214]

Addition of Organometallic Reagents to Enones in Aqueous Media Rhodium-catalyzed 1,4-addition of organometallic reagents to a,p-unsaturated compounds was first developed by Miyaura in 1997. Thus, Rh(acac)(CO)2/dppb was found to catalyze the 1,4-addition of aryl- and alkenylboronic acids to several ot,(3-unsaturated ketones in water-containing solvents at 50°C. The reaction conditions were successfully modified for the development of an asymmetric variant of this process by Hayashi and Miyaura in 1998. The important points of modification are (1) the use of Rh(acac)(C2H4)2/(5)-binap as a catalyst and... [Pg.69]

Almost 20 years after the initial report of the Stetter reaction, Ciganek reported an intramolecular variant of the Stetter reaction in 1995 with thiazolium precatalyst 74 providing chromanone 73 in 86% yield (Scheme 10) [64]. This intramolecular substrate 72 has become the benchmark for testing the efficiency of new catalysts. Enders and co-workers illnstrated the first asymmetric variant of the intramolecnlar Stetter reaction in 1996 utilizing chiral triazolinylidene pre-catalyst 14 [65]. Despite moderate selectivity, the implementation of a chiral triazolinylidene carbene in the Stetter reaction laid the fonndation for future work. [Pg.92]

The Friedel-Crafts reaction is one of the most important and versatile tools for the formation of carbon-carbon bonds in the synthesis of substituted aromatic and heteroaromatic compounds present in numerous natural products and drugs. Catalytic asymmetric variants using either metal complexes or organic molecules attracted considerable attention over the last few years. [Pg.404]

The Pictet-Spengler reaction is the method of choice for the preparation of tetrahydro-P-carbolines, which represent structural elements of several natural products such as biologically active alkaloids. It proceeds via a condensation of a carbonyl compound with a tryptamine followed by a Friedel-Crafts-type cyclization. In 2004, Jacobsen et al. reported the first catalytic asymmetric variant [25]. This acyl-Pictet-Spengler reaction involves an N-acyliminium ion as intermediate and is promoted by a chiral thiourea (general Brpnsted acid catalysis). [Pg.408]

One of the most important approaches to a-amino acids is based on the Strecker reaction. Although there are already a number of catalytic asymmetric variants, the cyanation of imines still challenges modem organic chemists. [Pg.421]

The addition of sulfonamides or alcohols to imines gives rise to aminals which represent structural elements of natnral prodncts and drugs. Recently, Antilla et al. reported the first catalytic asymmetric variants of both transformations. [Pg.423]

The aza-Diels-Alder reaction is an important and versatile tool for the preparation of nitrogen-containing heterocycles present in numerous natural products and drug candidates. It involves the [4 + 2] cycloaddition of either an imine with an electron-rich diene or an azabutadiene with an electron-rich alkene (inverse electron demand). Catalytic asymmetric variants employing not only metal complexes, but also organic molecules were disclosed over the last few years. [Pg.424]

Considerable interest has been shown in developing asymmetric variants of the Si-H insertion. The chiral auxiUary (Jl)-pantolactone has performed quite well in this chemistry, as illustrated in the formation of 169 in 79% diastereomeric excess (Eq. 19) [28]. A wide variety of chiral catalysts have been explored for the Si-H insertion chemistry of methyl phenyldiazoacetate [29, 117-119]. The highest reported enantioselectivity to date was obtained with the rhodium prolinate catalyst Rh2(S-DOSP)4, which generated 170 with 85% enantiomeric excess (Eq. 20) [120]. [Pg.328]

It is known that 5-acyloxyoxazoles 132 rearrange to 4-acyl-5(4/l/)-oxazolones 133 in the presence of 4-(dimethylamino)pyridme or 4-(pyrrohdino)pyridine. Recently, an asymmetric variant of this nucleophUe-catalyzed rearrangement that employs a chiral derivative of 4-(pyrrolidino)pyridine has been described. This procedure allows the construction of quaternary stereocenters with high levels of enantioselectivity (Scheme 7.38). Representative examples of saturated 5(4//)-oxazolones prepared via sigmatropic rearrangements are shown in Table 7.16 (Fig. 7.18). [Pg.159]

Moreover, the already known abihty of iridium compounds to catalyze hydrogen transfer reactions has been excellently applied in Oppenauer-type and domino-type reactions for valuable organic chemicals and further developments, including asymmetric variants to kinetic resolution of alcohols and fine chemicals, can be expected. [Pg.242]

The carbon fragment used in this approach can also be provided by sulfur yUdes. In this arena, Metzner and co-workers <99JCS(P1)731> developed a novel asymmetric variant employing (+)-(2/J,5/J)-2,5-dimethylthiolane (53) as the chiral auxiliary to prepare rrons-(S,S)-stilbene oxide (56). Chiral epoxides have also been prepared from aldehydes using sulfur ylides derived from the products of Baker s yeast reductions <99SL1328>. [Pg.63]

The conjugate addition of organometallic reagents to a./i-unsaturated compounds is one of the basic methods in our repertoire for the construction of carbon-carbon bonds. These addition reactions have been used as key steps in the synthesis of numerous biologically active compounds, and show a broad scope due to the large variety of donor and acceptor compounds that can be employed. It is evident that a tremendous effort has been devoted over the last three decades to develop asymmetric variants of this reaction. ... [Pg.772]

Herein, we report an extension of this methodology and report the metal-free hydrogenation of quinolines using 1 mol % of diphenyl phosphate (DPP) and the asymmetric variant of this procedure using 1 mol % of a chiral BlNOL-phosphate 1 as catalyst (Figure 4.2). [Pg.170]


See other pages where Variants asymmetric is mentioned: [Pg.15]    [Pg.46]    [Pg.100]    [Pg.32]    [Pg.18]    [Pg.22]    [Pg.155]    [Pg.1074]    [Pg.317]    [Pg.92]    [Pg.212]    [Pg.60]    [Pg.286]    [Pg.260]    [Pg.362]    [Pg.520]    [Pg.567]    [Pg.542]    [Pg.492]    [Pg.248]    [Pg.180]   
See also in sourсe #XX -- [ Pg.2 , Pg.435 ]

See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Amines asymmetric variants

Asymmetric variant of the

Asymmetric variant of the reaction

Chiral compounds asymmetric variants

Diels asymmetric variants

Rearrangement asymmetric variant

Stereoselectivity asymmetric variants

Systems asymmetric variant

© 2024 chempedia.info