Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral poly

FIGURE 7 16 Poly mers of propene The mam chain IS shown in a zigzag conformation Every other carbon bears a methyl sub stituent and is a chirality center (a) All the methyl groups are on the same side of the carbon chain in isotactic polypropylene (b) Methyl groups alternate from one side to the other in syndiotactic polypropy lene (c) The spatial orienta tion of the methyl groups IS random in atactic polypropylene... [Pg.313]

Another type of synthetic polymer-based chiral stationary phase is formed when chiral catalyst are used to initiate the polymerisation. In the case of poly(methyl methacrylate) polymers, introduced by Okamoto, the chiraUty of the polymer arises from the heUcity of the polymer and not from any inherent chirahty of the individual monomeric subunits (109). Columns of this type (eg, Chiralpak OT) are available from Chiral Technologies, Inc., or J. T. Baker Inc. [Pg.68]

Licjuid Crystals. Ferroelectric Hquid crystals have been appHed to LCD (Uquid crystal display) because of their quick response (239). Ferroelectric Hquid crystals have chiral components in their molecules, some of which are derived from amino acids (240). Concentrated solutions (10—30%) of a-helix poly(amino acid)s show a lyotropic cholesteric Hquid crystalline phase, and poly(glutamic acid ester) films display a thermotropic phase (241). Their practical appHcations have not been deterrnined. [Pg.297]

Most of the chiral membrane-assisted applications can be considered as a modality of liquid-liquid extraction, and will be discussed in the next section. However, it is worth mentioning here a device developed by Keurentjes et al., in which two miscible chiral liquids with opposing enantiomers of the chiral selector flow counter-currently through a column, separated by a nonmiscible liquid membrane [179]. In this case the selector molecules are located out of the liquid membrane and both enantiomers are needed. The system allows recovery of the two enantiomers of the racemic mixture to be separated. Thus, using dihexyltartrate and poly(lactic acid), the authors described the resolution of different drugs, such as norephedrine, salbu-tamol, terbutaline, ibuprofen or propranolol. [Pg.15]

The mixture of deprotected amino acid derivatives in solution was then immobilized onto a polymeric solid support, typically activated 5-)xm macroporous poly(hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads, to afford the chiral stationary phases with a multiplicity of selectors. Although the use of columns... [Pg.86]

For the separation of D,L-leucine, Ding et al. [62] used poly(vinyl alcohol) gel-coated microporous polypropylene hollow fibers (Fig. 5-11). An octanol phase containing the chiral selector (A-n-dodecyl-L-hydroxyproline) is flowing countercur-rently with an aqueous phase. The gel in the pores of the membrane permits diffusion of the leucine molecules, but prevents convection of the aqueous and octanol phase. At a proper selection of the flow ratios it is possible to achieve almost complete resolution of the D,L-leucine (Fig. 5-12). [Pg.139]

Free amino acids can be derivatized with isothiocyanates to phenyl- or methyl-thiohydantoin derivatives. The thiohydantoins can be separated on a CSP with poly-[Af-acryloyl-L-phenylalanine ethylester] (Chiraspher ) as a chiral selector [25]. This CSP offers a known selectivity for many five-membered heterocyclic rings. [Pg.199]

Electron-Deficient Polymers - Luminescent Transport Layers 16 Other Electron-Deficient PPV Derivatives 19 Electron-Deficient Aromatic Systems 19 Full Color Displays - The Search for Blue Emitters 21 Isolated Chromophores - Towards Blue Emission 21 Comb Polymers with Chromophores on the Side-Chain 22 Chiral PPV - Polarized Emission 23 Poly(thienylene vinylene)s —... [Pg.321]

Several alkyl aryl sulfides were electrochemically oxidized into the corresponding chiral sulfoxides using poly(amino acid)-coated electrodes448. Although the levels of enan-tioselection were quite variable, the best result involved t-butyl phenyl sulfoxide which was formed in 93% e.e. on a platinum electrode doubly coated with polypyrrole and poly(L-valine). Cyclodextrin-mediated m-chloroperbenzoic acid oxidation of sulfides proceeds with modest enantioselectivity44b. [Pg.828]

Linear Polymer with Chiral Units 9.4.2.1 Synthesis of Poly (thiophene) 11724a... [Pg.507]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

Subsequently, a number of reactions at poly-L-valine coated carbon electrodes 237-243) gj.g reported to yield optically active products. Reductions, e.g. of citraconic acid or l,l-dibromo-2,2-diphenylcyclopropane as well as the oxidation of aryl-alkyl sulfides proceeded with chiral induction at such electrodes... [Pg.73]

Sanborn, T., Wu, C., Zuckermann, R., and Barron, A. Extreme stability of helices formed by water-soluble poly-7M-sub-stituted glycines (polypeptoids) with alpha-chiral side chains. Biopolymers 2002, 63, 12-20. [Pg.30]

Chiral lactones were also formed by cyclocarbonylation [ 122] with chiral catalysts, such as Pd-poly-L-leucine catalytic system. For example, but-2-en-l-ol led to the corresponding cychc chiral lactone in the presence of Pd catalysts with chiral ligands (Scheme 33). About 10 mol% of Pd(II) chloride... [Pg.252]

Of further particular interest was that the crystallographic results on 2,5-DSP and poly-2,5-DSP had pointed out a very important future possibility that an absolute asymmetric synthesis could be achieved if any prochiral molecule, e.g. an unsymmetrical diolefin derivative, could be crystallized into a chiral crystal and if the reaction of the chiral crystal proceeded in the same manner as the 2,5-DSP crystal with retention of the crystal lattice (Wegner, 1972, 1973). Such types of absolute asymmetric synthesis with a high enantiomeric yield have now been performed by topochemical [2+2] photoreaction of unsymmetric diolefin crystals (Addadi etal., 1982 Hasegawa et al., 1990 Chung et al., 1991a,b). [Pg.121]

Along with the guidepost (Wegner, 1972, 1973) based on the crystal-to-crystal transition from 2,5-DSP to poly-2,5-DSP, absolute asymmetric synthesis has been achieved by the topochemical reaction of a chiral crystal of an achiral diolefin compound in the absence of any external chiral reagents. [Pg.151]

Fig. 11 (a) Schematic polymer structure of poly-7 OEt. Phenylene rings are omitted in order to simplify, (b) Molecular model of repeating structure of poly-7 OEt. Four chiral centres on each of two cyclobutane rings in both sides are enantiomeric to each other. [Pg.152]

Chiral dendrimers based on oligonaphthyl cores and Fr chet-type poly(aryl ether) dendrons have been investigated [44]. The absolute configuration of these dendrimers remains the same as that of their chiral cores. Both the nature of the core and the generation play a role in determining the fluorescence quantum yield. [Pg.170]


See other pages where Chiral poly is mentioned: [Pg.313]    [Pg.313]    [Pg.68]    [Pg.306]    [Pg.14]    [Pg.58]    [Pg.133]    [Pg.282]    [Pg.287]    [Pg.587]    [Pg.597]    [Pg.89]    [Pg.125]    [Pg.131]    [Pg.441]    [Pg.287]   
See also in sourсe #XX -- [ Pg.304 ]

See also in sourсe #XX -- [ Pg.218 ]

See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Chiral Poly(methacrylamides)

Chiral centre poly

Chiral liquid-crystalline poly

Chiral poly alkynes

Chiral poly crown

Chiral poly crown ethers

Chiral poly-NHC ligands

Chiral stationary phases poly derivatives

Chiroptical properties, poly chiral aggregates

Cinchona-Derived Chiral Poly(Phase-Transfer Catalysts) for Asymmetric Synthesis

Induced circular dichroism , poly chiral

Optical activity poly chiral aggregates

Poly , chiral recognition

Poly chiral aggregates

Poly chiral amino acids containing

Poly chiral centers containing

Poly chiral phosphine-functionalized

Poly chiral synthesis from

Poly-NHCs ligands chiral

© 2024 chempedia.info