Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric hydrogenation functionalized

In 2004, Bolm et al. reported the use of chiral iridium complexes with chelating phosphinyl-imidazolylidene ligands in asymmetric hydrogenation of functionalized and simple alkenes with up to 89% ee [17]. These complexes were synthesized from the planar chiral [2.2]paracyclophane-based imida-zolium salts 74a-c with an imidazolylidenyl and a diphenylphosphino substituent in pseudo ortho positions of the [2.2]paracyclophane (Scheme 48). Treatment of 74a-c with t-BuOLi or t-BuOK in THF and subsequent reaction of the in situ formed carbenes with [Ir(cod)Cl]2 followed by anion exchange with NaBARF afforded complexes (Rp)-75a-c in 54-91% yield. The chela-... [Pg.222]

In 2000, these authors also developed a very efficient diphosphine-bithiophene ligand, tetraMe-BITIOP, which is depicted in Scheme 8.29. The ruthenium complex of this electron-rich diphosphine was used as the catalyst in asymmetric hydrogenation reactions of prostereogenic carbonyl functions of a-... [Pg.263]

Rhodium complexes based on the chiral ligand (120) have been used in the asymmetric hydrogenation of functionalized chelating olefins in methanol and water. The results are compared to those obtained using the corresponding non-sulfonated catalysts in water all sulfonated... [Pg.113]

Thus, [HRh(C0)(TPPTS)3]/H20/silica (TPPTS = sodium salt of tri(m-sulfophenyl)phopshine) catalyzes the hydroformylation of heavy and functionalized olefins,118-122 the selective hydrogenation of a,/3-unsaturated aldehydes,84 and the asymmetric hydrogenation of 2-(6 -methoxy-2 -naphthyl)acrylic add (a precursor of naproxen).123,124 More recently, this methodology was tested for the palladium-catalyzed Trost Tsuji (allylic substitution) and Heck (olefin arylation) reactions.125-127... [Pg.455]

Complexes containing one binap ligand per ruthenium (Fig. 3.5) turned out to be remarkably effective for a wide range of chemical processes of industrial importance. During the 1980s, such complexes were shown to be very effective, not only for the asymmetric hydrogenation of dehydroamino adds [42] - which previously was rhodium s domain - but also of allylic alcohols [77], unsaturated acids [78], cyclic enamides [79], and functionalized ketones [80, 81] - domains where rhodium complexes were not as effective. Table 3.2 (entries 3-5) lists impressive TOF values and excellent ee-values for the products of such reactions. The catalysts were rapidly put to use in industry to prepare, for example, the perfume additive citronellol from geraniol (Table 3.2, entry 5) and alkaloids from cyclic enamides. These developments have been reviewed by Noyori and Takaya [82, 83]. [Pg.62]

In general, applications of AMPP have concentrated on the asymmetric hydrogenation of functionalized olefins, especially dehydroamino acids. Among... [Pg.883]

An analysis of the processes listed in Table 37.2 shows that asymmetric hydrogenation of C=C and C=0 functions is by far the predominant transition metal-catalyzed transformation applied for industrial processes, followed by epoxida-tion and dihydroxylation reactions. On the one hand, this is due to the broad scope of catalytic hydrogenation, and on the other hand it could be attributed to... [Pg.1284]

Allylic alcohol derivatives are quite useful in organic synthesis, so the asymmetric synthesis of such compounds via asymmetric hydrogenation of dienyl (especially enynyl) esters is desirable. The olefin functionality preserves diverse synthetic potential by either direct or remote functionalization. Boaz33 reported that enynyl ester and dienyl ester were preferred substrates for asymmetric hydrogenation using Rh-(Me-DuPhos) catalyst [Rh(I)-(R,R)-14], and products with extremely high enantioselectivity (>97%) were obtained (Schemes 6-11 and 6-12). [Pg.344]

Asymmetric hydrogenation of ketones is one of the most efficient methods for making chiral alcohols. Ru-BINAP catalysts are highly effective in the asymmetric hydrogenation of functionalized ketones,54,55 and this may be used in the industrial production of synthetic intermediates for some important antibiotics. The preparation of statine 65 (from 63b R = i-Bu) and its analog is one example (Scheme 6-28).56 Table 6-6 shows the results when asymmetric hydrogenation of 63 catalyzed by RuBr2[(R)-BINAP] yields threo-64 as the major product. [Pg.359]

In contrast to their success in the asymmetric hydrogenation of functionalized ketones, BINAP-Ru catalysts fail to give good results with simple ketone because such substrates lack heteroatoms that enable the substrate to anchor strongly to the Ru metal. [Pg.362]

Chiral ligand 78, bearing structural features similar to those of DuPhos, has also been synthesized and gives moderate to high enantioselectivity in the catalytic asymmetric hydrogenation of functionalized carbonyl groups. High levels... [Pg.365]

Homogeneous enantioselective hydrogenation constitutes one of the most versatile and effective methods to convert prochiral substrates to valuable optically active products. Recent progress makes it possible to synthesize a variety of chiral compounds with outstanding levels of efficiency and enantioselectivity through the reduction of the C=C, C=N, and C=0 bonds. The asymmetric hydrogenation of functionalized C=C bonds, such as enamide substrates, provides access to various valuable products such as amino acids, pharmaceuticals, and... [Pg.388]

Related catalytic enantioselective processes It is worthy of note that the powerful Ti-catalyzed asymmetric epoxidation procedure of Sharpless [27] is often used in the preparation of optically pure acyclic allylic alcohols through the catalytic kinetic resolution of easily accessible racemic mixtures [28]. When the catalytic epoxidation is applied to cyclic allylic substrates, reaction rates are retarded and lower levels of enantioselectivity are observed. Ru-catalyzed asymmetric hydrogenation has been employed by Noyori to effect the resolution of five- and six-membered allylic carbinols [29] in this instance, as with the Ti-catalyzed procedure, the presence of an unprotected hydroxyl function is required. Perhaps the most efficient general procedure for the enantioselective synthesis of this class of cyclic allylic ethers is that recently developed by Trost and co-workers, involving Pd-catalyzed asymmetric additions of alkoxides to allylic esters [30]. [Pg.194]

In summary, the asymmetric hydrogenation of olefins or functionalized ketones catalysed by chiral transition metal complexes is one of the most practical methods for preparing optically active organic compounds. Ruthenium and rhodium-diphosphine complexes, using molecular hydrogen or hydrogen transfer, are the most common catalysts in this area. The hydrogenation of simple ketones has proved to be difficult with metallic catalysts. However,... [Pg.116]


See other pages where Asymmetric hydrogenation functionalized is mentioned: [Pg.132]    [Pg.132]    [Pg.17]    [Pg.223]    [Pg.116]    [Pg.270]    [Pg.40]    [Pg.210]    [Pg.261]    [Pg.270]    [Pg.74]    [Pg.76]    [Pg.82]    [Pg.447]    [Pg.111]    [Pg.93]    [Pg.93]    [Pg.2]    [Pg.2]    [Pg.7]    [Pg.12]    [Pg.13]    [Pg.32]    [Pg.50]    [Pg.55]    [Pg.55]    [Pg.456]    [Pg.795]    [Pg.847]    [Pg.853]    [Pg.924]    [Pg.973]    [Pg.1046]    [Pg.1194]    [Pg.1421]    [Pg.346]    [Pg.518]    [Pg.117]   


SEARCH



Asymmetric Hydrogenations of Functionalized Ketones

Asymmetric hydrogenation functionalized ketones

Asymmetric hydrogenation of C=N functions

Hydrogen function

Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes

© 2024 chempedia.info