Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arylamine basicity

Substituted arylamines can be either more basic or less basic than aniline, depending on the substituent. Electron-donating substituents, such as — CH3, -NH2, and -OCH3, which increase the reactivity of an aromatic ring toward electrophilic substitution (Section 16.4), also increase the basicity of the corresponding arylamine. Electron-withdrawing substituents, such as —Cl, -NO2, and -CN, which decrease ring reactivity toward electrophilic substitution, also decrease arylamine basicity. Table 24.2 considers only -substituted anilines, but similar trends are observed for ortho and meta derivatives. [Pg.925]

Arylamines contain two functional groups the amine group and the aromatic ring they are difunctional compounds The reactivity of the amine group is affected by its aryl substituent and the reactivity of the ring is affected by its amine substituent The same electron delocalization that reduces the basicity and the nucleophilicity of an arylamme nitrogen increases the electron density in the aromatic ring and makes arylamines extremely reactive toward electrophilic aromatic substitution... [Pg.939]

In the ketone method, the central carbon atom is derived from phosgene (qv). A diarylketone is prepared from phosgene and a tertiary arylamine and then condenses with another mole of a tertiary arylamine (same or different) in the presence of phosphoms oxychloride or zinc chloride. The dye is produced directly without an oxidation step. Thus, ethyl violet [2390-59-2] Cl Basic Violet 4 (15), is prepared from 4,4 -bis(diethylamino)benzophenone with diethylaruline in the presence of phosphoms oxychloride. This reaction is very useful for the preparation of unsymmetrical dyes. Condensation of 4,4 -bis(dimethylamino)benzophenone [90-94-8] (Michler s ketone) with AJ-phenjl-l-naphthylamine gives the Victoria Blue B [2580-56-5] Cl Basic Blue 26, which is used for coloring paper and producing ballpoint pen pastes and inks. [Pg.271]

In a variation of this method, isolation of the ben2hydrol derivative is not required. The methane base undergoes oxidative condensation in the presence of acid with the same or a different arylamine direcdy to the dye. New fuchsine [3248-91 -7] Cl Basic Violet 2 (16), is prepared by condensation of two moles of o-toluidine with formaldehyde in nitrobenzene in the presence of iron salts to give the corresponding substituted diphenylmethane base. This base is also not isolated, but undergoes an oxidative condensation with another mole of o-toluidine to produce the dye. [Pg.272]

In addition to being more basic than arylamines, alkylamines are also more nucleophilic. All the reactions in Table 22.4 take place faster with alkylamines than with arylanines. [Pg.937]

As noted previously, arylamines are generally less basic than alkylamines. Anilinium ion has pKa = 4.63, for instance, whereas methylammonium ion has pfCa = 10.64. Arylamines are less basic than alkylamines because the nitrogen lone-pair electrons are delocalized by interaction with the aromatic ring tt electron system and are less available for bonding to H+. In resonance terms, aryl-amines are stabilized relative to alkylamines because of their five resonance forms. [Pg.924]

Much of the resonance stabilization is lost on protonation, however, so the energy difference between protonated and nonprotonated forms is higher for arvlamines than it is for alkylamines. As a result, arylamines are less basic. Figure 24.3 illustrates the difference. [Pg.925]

Figure 24.3 Arylamines have a larger positive AG for protonation and are therefore less basic than alkylarnines, primarily because of resonance stabilization of the ground state. Electrostatic potential maps show that lone-pair electron density is delocalized in the amine but the charge is localized in the corresponding ammonium ion. Figure 24.3 Arylamines have a larger positive AG for protonation and are therefore less basic than alkylarnines, primarily because of resonance stabilization of the ground state. Electrostatic potential maps show that lone-pair electron density is delocalized in the amine but the charge is localized in the corresponding ammonium ion.
Heavy metals are widely used as catalysts in the manufacture of anthraquinonoid dyes. Mercury is used when sulphonating anthraquinones and copper when reacting arylamines with bromoanthraquinones. Much effort has been devoted to minimising the trace metal content of such colorants and in effluents from dyemaking plants. Metal salts are used as reactants in dye synthesis, particularly in the ranges of premetallised acid, direct or reactive dyes, which usually contain copper, chromium, nickel or cobalt. These structures are described in detail in Chapter 5, where the implications in terms of environmental problems are also discussed. Certain basic dyes and stabilised azoic diazo components (Fast Salts) are marketed in the form of tetrachlorozincate complex salts. The environmental impact of the heavy metal salts used in dye application processes is dealt with in Volume 2. [Pg.41]

Another fallacy to be refuted by PA data was the widespread belief that the low basicity of arylamines compared to alkylamines simply reflects delocalization of the lone pair of electrons on the nitrogen atom within the aromatic ring. Thus, the low basicity of aniline (pKa = 4.58) compared to ammonia (pKa = 9.27) is often attributed to such a conjugative... [Pg.235]

Arylamines and hydrazines react with tosyl azide under basic conditions to yield aryl azides [1] and arenes [2], respectively, by an aza-transfer process (Scheme 5.25). Traditionally, the reaction of anilines with tosyl azides requires strong bases, such as alkyl lithiums, but acceptable yields (>50%) have been obtained under liquidiliquid phase-transfer catalytic conditions. Not surprisingly, the best yields are obtained when the aryl ring is substituted by an electron-withdrawing substituent, and the yields for the corresponding reaction with aliphatic amines are generally poor (-20%). Comparison of the catalytic effect of various quaternary ammonium salts showed that tetra-/i-butylammonium bromide produces the best conversion, but differences between the various catalysts were minimal [ 1 ]. [Pg.217]

Catalysed oxidation of primary and secondary amines generally has little synthetic value. Primary amines yield either a mixture of nitriles and amides (ca. 30%) or, in the case of arylamines, the azo derivatives (42-99%) [39], Symmetrical and non-symmetrical azoarenes are also produced in good yields ( 60%) from the reaction of acetanilides with nitroarenes under basic solidtliquid conditions, although higher yields are obtained using TDA-1 [40],... [Pg.421]

For the quinone imine cyclization of iron complexes to carbazoles the arylamine is chemoselectively oxidized to a quinone imine before the cyclodehydrogenation [99]. The basic strategy of this approach is demonstrated for the total synthesis of the 3-oxygenated tricyclic carbazole alkaloids 4-deoxycarbazomycin B, hyellazole, carazostatin, and 0-methylcarazostatin (Scheme 17). [Pg.128]

As previously discussed, activation of the iridium-phosphoramidite catalyst before addition of the reagents allows less basic nitrogen nucleophiles to be used in iridium-catalyzed allylic substitution reactions [70, 88]. Arylamines, which do not react with allylic carbonates in the presence of the combination of LI and [Ir(COD)Cl]2 as catalyst, form allylic amination products in excellent yields and selectivities when catalyzed by complex la generated in sim (Scheme 15). The scope of the reactions of aromatic amines is broad. Electron-rich and electron-neutral aromatic amines react with allylic carbonates to form allylic amines in high yields and excellent regio- and enantioselectivities as do hindered orlAo-substituted aromatic amines. Electron-poor aromatic amines require higher catalyst loadings, and the products from reactions of these substrates are formed with lower yields and selectivities. [Pg.191]

The construction of the carbazole framework was achieved by slightly modifying the reaction conditions previously reported for the racemic synthesis (614). Reaction of the iron complex salt 602 with the fully functionalized arylamine 814 in air provided the tricarbonyliron-coordinated 4b,8a-dihydrocarbazole complex 819 via sequential C-C and C-N bond formation. This one-pot annulation is the result of an electrophilic aromatic substitution and a subsequent iron-mediated oxidative cyclization by air as the oxidizing agent. The aromatization with concomitant demetalation of complex 819 using NBS under basic reaction conditions, led to the carbazole. Using the same reagent under acidic reaction conditions the carbazole was... [Pg.253]


See other pages where Arylamine basicity is mentioned: [Pg.643]    [Pg.435]    [Pg.925]    [Pg.738]    [Pg.643]    [Pg.435]    [Pg.925]    [Pg.738]    [Pg.1049]    [Pg.1327]    [Pg.425]    [Pg.924]    [Pg.958]    [Pg.1287]    [Pg.1331]    [Pg.500]    [Pg.1049]    [Pg.534]    [Pg.187]    [Pg.232]    [Pg.149]    [Pg.153]    [Pg.155]    [Pg.286]    [Pg.419]    [Pg.670]   
See also in sourсe #XX -- [ Pg.922 , Pg.924 , Pg.925 ]

See also in sourсe #XX -- [ Pg.922 , Pg.924 , Pg.925 ]

See also in sourсe #XX -- [ Pg.756 , Pg.757 ]

See also in sourсe #XX -- [ Pg.950 , Pg.952 ]




SEARCH



Arylamin

Arylamination

Arylamine

Arylamines

Arylamines basicity

Arylamines basicity

Basicity of Arylamines

Basicity of Substituted Arylamines

Basicity, alkylamines arylamines

© 2024 chempedia.info