Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines aromatic, substituted

The reagents and conditions for the Clemmensen reduction are similar to those used to reduce a nitro group to an amine. Aromatic substitution followed by reduction is a valuable process for making compounds with specific substitution patterns, such as in the following synthesis. [Pg.784]

Arylamines contain two functional groups the amine group and the aromatic ring they are difunctional compounds The reactivity of the amine group is affected by its aryl substituent and the reactivity of the ring is affected by its amine substituent The same electron delocalization that reduces the basicity and the nucleophilicity of an arylamme nitrogen increases the electron density in the aromatic ring and makes arylamines extremely reactive toward electrophilic aromatic substitution... [Pg.939]

Although It IS possible to prepare aryl chlorides and aryl bromides by electrophilic aromatic substitution it is often necessary to prepare these compounds from an aromatic amine The amine is converted to the corresponding diazonmm salt and then treated with copper(I) chloride or copper(I) bromide as appropriate... [Pg.948]

Tertiary alkylamines illustrate no useful chemistry on nitrosation Tertiary aryl-amines undergo nitrosation of the ring by electrophilic aromatic substitution... [Pg.959]

ULLMANN GOLDBERG Aromatic substitution Cu catalyzed substitution of aromatic halides in the synthesis of disryls, diaiyl ethers, diaryl amines, phenols... [Pg.395]

Tertiary amines form a further important class of catalytic hardeners. For example, triethylamine has found use in adhesive formulations. Also of value are the aromatic substituted tertiary amines such as benzyldimethylamine and dimethyldiaminophenol. They have found uses in adhesive and coating applications. A long pot life may be achieved by the use of salts of the aromatic substituted amines. [Pg.755]

The range of nueleophiles whieh have been observed to partieipate in nueleophilie aromatie substitution is similar to that for S[, 2 reactions and includes alkoxides, phenoxides, sulftdes, fluoride ion, and amines. Substitutions by earbanions are somewhat less common. This may be because there are frequently complications resulting from eleetron-transfer proeesses with nitroaromatics. Solvent effects on nucleophilic aromatic substitutions are similar to those discussed for S 2 reactions. Dipolar... [Pg.591]

Nucleophilic aromatic substitution of the anthranilic acid derivatives, 72, on ortho-bromonitrobenzene affords the diphenyl-amine, 73. The ester is then saponified and the nitro group reduced to the amine (74). Cyclization of the resulting amino acid by heat affords the lactam (75). Alkylation on the amide nitrogen with 2-dimethylaminoethyl chloride by means of sodium amide affords dibenzepine (76). ... [Pg.405]

Nucleophilic aromatic substitution of the anion from ary lace ton itrile 113 on the dichloroni-trobenzene 114 results in replacement of the para halogen and formation of 115. Reduction of the nitro group gives the corresponding aniline (116). Acylation of the amine with 3,5-diiodoacetylsa-licylic acid 117 by means of the mixed anhydride formed by use of ethyl chloroformate, gives, after alkaline hydroly.sis, the anthelmintic agent closantel (118) [28]. [Pg.36]

Another drawback to the use of amino-substituted benzenes in electrophilic aromatic substitution reactions is that Friedel-Crafts reactions are not successful (Section 16.3). The amino group forms an acid-base complex with the AICI3 catalyst, which prevents further reaction from occurring. Both drawbacks can be overcome, however, b3 carrying out electrophilic aromatic substitution reactions on the corresponding amide rather than on the free amine. [Pg.939]

Heterocyclic amines are compounds that contain one or more nitrogen atoms as part of a ring. Saturated heterocyclic amines usually have the same chemistry as their open-chain analogs, but unsaturated heterocycles such as pyrrole, imidazole, pyridine, and pyrimidine are aromatic. All four are unusually stable, and all undergo aromatic substitution on reaction with electrophiles. Pyrrole is nonbasic because its nitrogen lone-pair electrons are part of the aromatic it system. Fused-ring heterocycles such as quinoline, isoquinoline, indole, and purine are also commonly found in biological molecules. [Pg.958]

The C-nitrosation of aromatic compounds is characterized by similar reaction conditions and mechanisms to those discussed earlier in this section. The reaction is normally carried out in a strongly acidic solution, and in most cases it is the nitrosyl ion which attacks the aromatic ring in the manner of an electrophilic aromatic substitution, i. e., via a a-complex as steady-state intermediate (see review by Williams, 1988, p. 58). We mention C-nitrosation here because it may interfere with diazotization of strongly basic aromatic amines if the reaction is carried out in concentrated sulfuric acid. Little information on such unwanted C-nitrosations of aromatic amines has been published (Blangey, 1938 see Sec. 2.2). [Pg.53]

Hydro-de-diazoniation seems to be an unnecessary reaction from the synthetic standpoint, as arenediazonium salts are obtained from the respective amines, reagents that are normally synthesized from the hydrocarbon. Some aromatic compounds, however, cannot be synthesized by straightforward electrophilic aromatic substitution examples of these are the 1,3,5-trichloro- and -tribromobenzenes (see below). These simple benzene derivatives are synthesized from aniline via halogenation, diazotization and hydro-de-diazoniation. Furthermore hydro-de-diazoniation is useful for the introduction of a hydrogen isotope in specific positions. [Pg.222]

If one limits the consideration to only that limited number of reactions which clearly belong to the category of nucleophilic aromatic substitutions presently under discussion, only a few experimental observations are pertinent. Bunnett and Bernasconi30 and Hart and Bourns40 have studied the deuterium solvent isotope effect and its dependence on hydroxide ion concentration for the reaction of 2,4-dinitrophenyl phenyl ether with piperidine in dioxan-water. In both studies it was found that the solvent isotope effect decreased with increasing concentration of hydroxide ion, and Hart and Bourns were able to estimate that fc 1/ for conversion of intermediate to product was approximately 1.8. Also, Pietra and Vitali41 have reported that in the reaction of piperidine with cyclohexyl 2,4-dinitrophenyl ether in benzene, the reaction becomes 1.5 times slower on substitution of the N-deuteriated amine at the highest amine concentration studied. [Pg.420]

Various phenallcylamines were shown to produce either DOM-like or AMPH-like stimulus effects the structure-activity requirements for these activities are different from the standpoints of aromatic substitution patterns, terminal amine substituents, and optical activity. Thus, it has been possible to formulate two distinct SARs. It should be realized, however, that phenalkylamines need not produce only one of these two types of effects certain phenallcylamines can produce pharmacological effects like neither DOM nor AMPH. Moreover, they can produce effects that are primarily peripheral, not central, in nature (Glennon 1987a). The fact that an agent produced DOM- or AMPH-like effects does not imply that it carmot produce an additional effect conversely, if an agent does not produce either DOM- or AMPH-like stimulus effects, it is not necessarily inactive. [Pg.45]

In the tris-pentafluorophenyl analog (TFPC), in contrast to other Co corroles, aromatic amines can substitute PPh3 to form six-coordinate trivalent bis(amine) complexes.788 Bis-chlorosulfon-ation of TFPC occurs regioselectively to give the 2,17-(pyrrole)-bis-chlorosulfonated derivative fully characterized as its triphenylphosphinecobalt(III) complex.789 The amphiphilic bis-sulfonic acid was also obtained. [Pg.69]

The extent to which 151 phosphorylates the aromatic amine in the phenyl ring is highly dependent upon the solvent. For instance, aromatic substitution of N-methylaniline is largely suppressed in the presence of dioxane or acetonitrile while pho.sphoramidate formation shows a pronounced concomitant increase. The presence of a fourfold excess (v/v) or pyridine, acetonitrile, dioxane, or 1,2-di-methoxyethane likewise suppresses aromatic substitution of N,N-diethylaniline below the detection limit. It appears reasonable to assume that 151 forms complexes of type 173 and 174 with these solvents — resembling the stable dioxane-S03 adduct 175 — which in turn represent phosphorylating reagents. They are, however, weaker than monomeric metaphosphate 151 and can only react with strong nucleophiles. [Pg.113]

Amination of aromatic nitro compounds is a very important process in both industry and laboratory. A simple synthesis of 4-aminodiphenyl amine (4-ADPA) has been achieved by utilizing a nucleophilic aromatic substitution. 4-ADPA is a key intermediate in the rubber chemical family of antioxidants. By means of a nucleophibc attack of the anilide anion on a nitrobenzene, a o-complex is formed first, which is then converted into 4-nitrosodiphenylamine and 4-nitrodiphenylamine by intra- and intermolecular oxidation. Catalytic hydrogenation finally affords 4-ADPA. Azobenzene, which is formed as a by-product, can be hydrogenated to aniline and thus recycled into the process. Switching this new atom-economy route allows for a dramatic reduction of chemical waste (Scheme 9.9).73 The United States Environmental Protection Agency gave the Green Chemistry Award for this process in 1998.74... [Pg.316]

In recent years, the importance of aliphatic nitro compounds has greatly increased, due to the discovery of new selective transformations. These topics are discussed in the following chapters Stereoselective Henry reaction (chapter 3.3), Asymmetric Micheal additions (chapter 4.4), use of nitroalkenes as heterodienes in tandem [4+2]/[3+2] cycloadditions (chapter 8) and radical denitration (chapter 7.2). These reactions discovered in recent years constitute important tools in organic synthesis. They are discussed in more detail than the conventional reactions such as the Nef reaction, reduction to amines, synthesis of nitro sugars, alkylation and acylation (chapter 5). Concerning aromatic nitro chemistry, the preparation of substituted aromatic compounds via the SNAr reaction and nucleophilic aromatic substitution of hydrogen (VNS) are discussed (chapter 9). Preparation of heterocycles such as indoles, are covered (chapter 10). [Pg.381]


See other pages where Amines aromatic, substituted is mentioned: [Pg.27]    [Pg.27]    [Pg.28]    [Pg.426]    [Pg.456]    [Pg.82]    [Pg.642]    [Pg.355]    [Pg.96]    [Pg.325]    [Pg.374]    [Pg.220]    [Pg.316]    [Pg.940]    [Pg.20]    [Pg.421]    [Pg.464]    [Pg.697]    [Pg.206]    [Pg.224]    [Pg.296]    [Pg.370]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Amination electrophilic aromatic substitutions

Amine substitution

Amines aromatic nucleophilic substitution

Amines electrophilic aromatic substitution

Amines, substituted

Aromatic amination

Aromatic amines

Aromatics amination

Basicity amines, aromatic, substituted

Nucleophilic aromatic substitution amine nucleophiles

Nucleophilic aromatic substitution amines, base catalysis

REARRANGEMENT OF N-SUBSTITUTED AROMATIC AMINES

Reaction XCIII.—Oxidation of Primary Aromatic Amines and their para-substituted Derivatives to Quinones

Rearrangements of other N-substituted aromatic amines

Ring substitution in aromatic amines

Side-chain aromatic amine-substituted

© 2024 chempedia.info