Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromaticity polarizability

In their reactions with suitable nucleophiles, such as tt-aromatics or heteroatom donor nucleophiles, the readily polarizable linear acylium ions shift a Tt-electron pair to oxygen, bending the ions and developing an empty p-orbital at the carbocationic center. This enables the reaction with aromatics. The acetylation of benzene can be depicted as... [Pg.193]

There were two schools of thought concerning attempts to extend Hammett s treatment of substituent effects to electrophilic substitutions. It was felt by some that the effects of substituents in electrophilic aromatic substitutions were particularly susceptible to the specific demands of the reagent, and that the variability of the polarizibility effects, or direct resonance interactions, would render impossible any attempted correlation using a two-parameter equation. - o This view was not universally accepted, for Pearson, Baxter and Martin suggested that, by choosing a different model reaction, in which the direct resonance effects of substituents participated, an equation, formally similar to Hammett s equation, might be devised to correlate the rates of electrophilic aromatic and electrophilic side chain reactions. We shall now consider attempts which have been made to do this. [Pg.137]

Phenylalanine and tryptophan have side chains that incorporate aromatic rings which are large and hydrophobic The aromatic portion of tryptophan is bicyclic which makes it larger than phenylalanine Tryptophan also has a more electron rich aromatic ring and is more polarizable than phenylalanine Its role is more specialized and it is less abundant m proteins than most of the other ammo acids... [Pg.1113]

In order for dipole—dipole and dipole-iaduced dipole iateractioas to be effective, the molecule must coataia polar groups and/or be highly polarizable. Ease of electronic distortion is favored by the presence of aromatic groups and double or triple bonds. These groups frequently are found ia the molecular stmcture of Hquid crystal compouads. The most common nematogenic and smectogenic molecules are of the type shown ia Table 2. [Pg.198]

In general, the dissection of substituertt effects need not be limited to resonance and polar components, vdiich are of special prominence in reactions of aromatic compounds.. ny type of substituent interaction with a reaction center could be characterized by a substituent constant characteristic of the particular type of interaction and a reaction parameter indicating the sensitivity of the reaction series to that particular type of interactioa For example, it has been suggested that electronegativity and polarizability can be treated as substituent effects separate from polar and resonance effects. This gives rise to the equation... [Pg.211]

The induced counter-dipole can act in a similar manner to a permanent dipole and the electric forces between the two dipoles (permanent and induced) result in strong polar interactions. Typically, polarizable compounds are the aromatic hydrocarbons examples of their separation using induced dipole interactions to affect retention and selectivity will be given later. Dipole-induced dipole interaction is depicted in Figure 12. Just as dipole-dipole interactions occur coincidentally with dispersive interactions, so are dipole-induced dipole interactions accompanied by dispersive interactions. It follows that using an n-alkane stationary phase, aromatic... [Pg.68]

Alternatively, using a polyethylene glycol stationary phase, aromatic hydrocarbons can also be retained and separated primarily by dipole-induced dipole interactions combined with some dispersive interactions. Molecules can exhibit multiple interactive properties. For example, phenyl ethanol possesses both a dipole as a result of the hydroxyl group and is polarizable due to the aromatic ring. Complex molecules such as biopolymers can contain many different interactive groups. [Pg.69]

Silica gel, per se, is not so frequently used in LC as the reversed phases or the bonded phases, because silica separates substances largely by polar interactions with the silanol groups on the silica surface. In contrast, the reversed and bonded phases separate material largely by interactions with the dispersive components of the solute. As the dispersive character of substances, in general, vary more subtly than does their polar character, the reversed and bonded phases are usually preferred. In addition, silica has a significant solubility in many solvents, particularly aqueous solvents and, thus, silica columns can be less stable than those packed with bonded phases. The analytical procedure can be a little more complex and costly with silica gel columns as, in general, a wider variety of more expensive solvents are required. Reversed and bonded phases utilize blended solvents such as hexane/ethanol, methanol/water or acetonitrile/water mixtures as the mobile phase and, consequently, are considerably more economical. Nevertheless, silica gel has certain areas of application for which it is particularly useful and is very effective for separating polarizable substances such as the polynuclear aromatic hydrocarbons and substances... [Pg.93]

The effects of the nucleophile on aromatic substitution which are pertinent to our main theme of relative reactivity of azine rings and of ring-positions are brought together here. The influence of a nucleophile on relative positional reactivity can arise from its characteristics alone or from its interaction with the ring or with ring-substituents. The effect of different nucleophiles on the rates of reaction of a single substrate has been discussed in terms of polarizability, basicity, alpha effect (lone-pair on the atom adjacent to the nucleophilic atom), and solvation in several reviews and papers. ... [Pg.256]

The refractive index of a medium is the ratio of the speed of light in a vacuum to its speed in the medium, and is the square root of the relative permittivity of the medium at that frequency. When measured with visible light, the refractive index is related to the electronic polarizability of the medium. Solvents with high refractive indexes, such as aromatic solvents, should be capable of strong dispersion interactions. Unlike the other measures described here, the refractive index is a property of the pure liquid without the perturbation generated by the addition of a probe species. [Pg.99]

Further lowering the dielectric constants has been achieved by preparing highly fluorinated polyethers without any sulfone, ketone, or other polarizable groups.239 241 Typically, the /jara-lluorinc atoms on highly fluorinated aromatic compounds, such as hexafluorobenzene and decafluorobiphenyl, are activated and thus can go through aromatic nucleophilic substitution with HFBPA under typical reaction conditions (Scheme 6.31).217... [Pg.362]

As a result of its highly polar character, silica gel is particularly useful in the separation of polarizable materials such as the aromatic hydrocarbons and polynuclear aromatics. It is also useful in the separation of weakly polar solute mixtures such as ethers, esters and in some cases, ketones. The mobile phases that are commonly employed with silica gel are the n-paraffins and mixtures of the n-paraffins with methylene dichloride or chloroform. It should be borne in mind that chloroform is opaque to UV light at 254 nm and thus, if a fixed wavelength UV detector is being used, methylene dichloride might be a better choice. Furthermore, chloroform is considered toxic and requires special methods of waste disposal. Silica gel is strongly deactivated with water and thus, to ensure stable retentive characteristics, the solvent used for the mobile phase should either be completely dry or have a controlled amount of water present. The level of water in the solvent that will have significant effect on solute retention is extremely small. The solubility of water in n-heptane is... [Pg.69]

In summary, examples of the successful use of silica gel as a conventional stationary phase are in the analysis of mixtures containing polarizable and relatively low polarity solutes typified by mixtures of aromatic hydrocarbons, polynuclear aromatics, nitro compounds, carotenes and vitamin A formulas. [Pg.70]

In summary, silica gel can be an excellent stationary phase for use in exclusion chromatography in the separation of high molecular weight, weakly polar or polarizable polymers. It cannot be used for separating mixtures that require an aqueous mobile phase or operate at a pH outside the range of 4-8. Examples of the type of materials that can be separated by exclusion chromatography using silica gel are the polystyrenes, polynuclear aromatics, polysiloxanes and similar polymeric mixtures that are soluble and stable in solvents such as tetrahydrofuran. [Pg.71]

The pore structure of most cross-linked polystyrene resins are the so called macro-reticular type which can be produced with almost any desired pore size, ranging from 20A to 5,000A. They exhibit strong dispersive type interaction with solvents and solutes with some polarizability arising from the aromatic nuclei in the polymer. Consequently the untreated resin is finding use as an alternative to the C8 and Cl8 reverse phase columns based on silica. Their use for the separation of peptide and proteins at both high and low pH is well established. [Pg.85]

The silica gel surface is extremely polar and, as a result, must often be deactivated with a polar solvent such as ethyl acetate, propanol or even methanol. The bulk solvent is usually an n-alkane such as n-heptane and the moderators (the name given to the deactivating agents) are usually added at concentrations ranging from 0.5 to 5% v/v. Silica gel is very effective for separating polarizable materials such as the aromatic hydrocarbons, nitro hydrocarbons (aliphatic and aromatic), aliphatic ethers, aromatic esters, etc. When separating polarizable substances as opposed to substances with permanent dipoles, mixtures of an aliphatic hydrocarbon with a chlorinated hydrocarbon such as chlorobutane or methylene dichloride are often used as the mobile... [Pg.304]


See other pages where Aromaticity polarizability is mentioned: [Pg.91]    [Pg.91]    [Pg.26]    [Pg.1386]    [Pg.2543]    [Pg.181]    [Pg.428]    [Pg.498]    [Pg.503]    [Pg.199]    [Pg.131]    [Pg.380]    [Pg.259]    [Pg.542]    [Pg.74]    [Pg.4]    [Pg.40]    [Pg.158]    [Pg.37]    [Pg.403]    [Pg.362]    [Pg.755]    [Pg.756]    [Pg.26]    [Pg.26]    [Pg.76]    [Pg.239]    [Pg.222]    [Pg.32]    [Pg.41]    [Pg.360]    [Pg.377]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Poly polarizable aromatic groups

© 2024 chempedia.info