Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction aromatic compounds

Other Carbocyclic Aromatic Compounds Reduction of Carbocyclic Rings... [Pg.164]

Oxidation of Aromatic Compounds Reduction of Aromatic Compounds Synthesis of Trisubstituted Benzenes... [Pg.11]

We studied ring nitration in Chapter 15 and saw there that it is applicable to a wide variety of aromatic compounds. Reduction of the nitro group can also be carried out in a number of ways. The most frequently used methods employ catalytic hydrogenation, or treatment of the nitro compound with acid and iron. Zinc, tin, or a metal salt such as SnCl2 can also be used. Overall, this is a 6e reduction. [Pg.911]

Akhrem, A. A. Reshetova, I. G. Titov, Yu. A. 1972, Birch Reduction of Aromatic Compound, Plenum New York... [Pg.361]

Because acylation of an aromatic ring can be accomplished without rearrangement it is frequently used as the first step m a procedure for the alkylation of aromatic compounds by acylation-reduction As we saw m Section 12 6 Friedel-Crafts alkylation of ben zene with primary alkyl halides normally yields products having rearranged alkyl groups as substituents When a compound of the type ArCH2R is desired a two step sequence IS used m which the first step is a Friedel-Crafts acylation... [Pg.486]

Iron(III) bromide [10031-26-2], FeBr, is obtained by reaction of iron or inon(II) bromide with bromine at 170—200°C. The material is purified by sublimation ia a bromine atmosphere. The stmcture of inoa(III) bromide is analogous to that of inon(III) chloride. FeBr is less stable thermally than FeCl, as would be expected from the observation that Br is a stronger reductant than CF. Dissociation to inon(II) bromide and bromine is complete at ca 200°C. The hygroscopic, dark red, rhombic crystals of inon(III) bromide are readily soluble ia water, alcohol, ether, and acetic acid and are slightly soluble ia Hquid ammonia. Several hydrated species and a large number of adducts are known. Solutions of inon(III) bromide decompose to inon(II) bromide and bromine on boiling. Iron(III) bromide is used as a catalyst for the bromination of aromatic compounds. [Pg.436]

Rubbers. Plasticizers have been used in mbber processing and formulations for many years (8), although phthaHc and adipic esters have found Htde use since cheaper alternatives, eg, heavy petroleum oils, coal tars, and other predominandy hydrocarbon products, are available for many types of mbber. Esters, eg, DOA, DOP, and DOS, can be used with latex mbber to produce large reductions in T. It has been noted (9) that the more polar elastomers such as nitrile mbber and chloroprene are insufficiendy compatible with hydrocarbons and requite a more specialized type of plasticizer, eg, a phthalate or adipate ester. Approximately 50% of nitrile mbber used in Western Europe is plasticized at 10—15 phr (a total of 5000—6000 t/yr), and 25% of chloroprene at ca 10 phr (ca 2000 t/yr) is plasticized. Usage in other elastomers is very low although may increase due to toxicological concerns over polynuclear aromatic compounds (9). [Pg.129]

Sulfonic acids are prone to reduction with iodine [7553-56-2] in the presence of triphenylphosphine [603-35-0] to produce the corresponding iodides. This type of reduction is also facile with alkyl sulfonates (16). Aromatic sulfonic acids may also be reduced electrochemicaHy to give the parent arene. However, sulfonic acids, when reduced with iodine and phosphoms [7723-14-0] produce thiols (qv). Amination of sulfonates has also been reported, in which the carbon—sulfur bond is cleaved (17). Ortho-Hthiation of sulfonic acid lithium salts has proven to be a useful technique for organic syntheses, but has Httie commercial importance. Optically active sulfonates have been used in asymmetric syntheses to selectively O-alkylate alcohols and phenols, typically on a laboratory scale. Aromatic sulfonates are cleaved, ie, desulfonated, by uv radiation to give the parent aromatic compound and a coupling product of the aromatic compound, as shown, where Ar represents an aryl group (18). [Pg.96]

Other Applications. Hydroxylamine-O-sulfonic acid [2950-43-8] h.2is many applications in the area of organic synthesis. The use of this material for organic transformations has been thoroughly reviewed (125,126). The preparation of the acid involves the reaction of hydroxjlamine [5470-11-1] with oleum in the presence of ammonium sulfate [7783-20-2] (127). The acid has found appHcation in the preparation of hydra2ines from amines, aUphatic amines from activated methylene compounds, aromatic amines from activated aromatic compounds, amides from esters, and oximes. It is also an important reagent in reductive deamination and specialty nitrile production. [Pg.103]

The styrene double bond in 9(ll)-dehydroestradiol 3-methyI ether (1) or its 8-dehydro counterpart is reduced by potassium or lithium in ammonia without affecting the aromatic ring estradiol 3-methyl ether (2) is formed from both compounds. Reduction of the corresponding 17-ketones occurs with partial or complete reduction of the carbonyl group. Lithium... [Pg.2]

The A-ring of the 17-ol (25) derived from equilenin 3-methyl ether is reduced rapidly under Birch reduction conditions, since the 1,4-positions are unsubstituted. The B-ring is reduced at a much slower rate, as is characteristic of aromatic compounds in which 1,4-reduction can occur only if a proton enters an alkylated position. Treatment of (25) with sodium and t-butyl alcohol in ammonia reduces only the A-ring to afford the corresponding 1,4-dihydro compound in over 85% yield.On the other hand,... [Pg.8]

The term Birch reduction was originally applied to the reduction of aromatic compounds by alkali metals and an alcohol in ammonia. In recent years many chemists have used the term to include all metal-ammonia reductions, whether an alcoholic proton source is present or not. The author prefers to use the term Birch reduction to designate any reduction carried out in ammonia with a metal and a proton donor as or more acidic than an alcohol, since Birch customarily used such a proton donor in his extensive pioneering work. The term metal-ammonia reduction is best reserved for reductions in which ammonia is the only proton donor present. This distinction in terminology emphasizes the importance of the acidity of the proton donor in the reduction process. [Pg.12]

Krapcho and Bothner-By made additional findings that are valuable ii understanding the Birch reduction. The relative rates of reduction o benzene by lithium, sodium and potassium (ethanol as proton donor) wer found to be approximately 180 1 0.5. In addition, they found that ben zene is reduced fourteen times more rapidly when methanol is the protoi donor than when /-butyl alcohol is used. Finally, the relative rates of reduc tion of various simple aromatic compounds by lithium were deteiTnined these data are given in Table 1-2. Taken together, the above data sho that the rate of a given Birch reduction is strikingly controlled by the meta... [Pg.14]

Various other observations of Krapcho and Bothner-By are accommodated by the radical-anion reduction mechanism. Thus, the position of the initial equilibrium [Eq. (3g)] would be expected to be determined by the reduction potential of the metal and the oxidation potential of the aromatic compound. In spite of small differences in their reduction potentials, lithium, sodium, potassium and calcium afford sufficiently high concentrations of the radical-anion so that all four metals can effect Birch reductions. The few compounds for which comparative data are available are reduced in nearly identical yields by the four metals. However, lithium ion can coordinate strongly with the radical-anion, unlike sodium and potassium ions, and consequently equilibrium (3g) for lithium is shifted considerably... [Pg.15]

Reduction of a conjugated enone to a saturated ketone requires the addition of two electrons and two protons. As in the case of the Birch reduction of aromatic compounds, the exact order of these additions has been the subject of study and speculation. Barton proposed that two electrons add initially giving a dicarbanion of the structure (49) which then is protonated rapidly at the / -position by ammonia, forming the enolate salt (50) of the saturated ketone. Stork later suggested that the radical-anion (51), a one electron... [Pg.27]

Stability toward reduction makes hydrogen fluoride a good medium for different hydrogenation processes [1, 2] It is a useful solvent for the hydrogenation of benzene in the presence of Lewis acids [f ] Anhydrous hydrofluonc acid has pronounced catalytic effect on the hydrogenations of various aromatic compounds, aliphatic ketones, acids, esters, and anhydrides in the presence of platinum dioxide [2] (equations 1-3)... [Pg.941]

Because of Us high polarity and low nucleophilicity, a trifluoroacetic acid medium is usually used for the investigation of such carbocationic processes as solvolysis, protonation of alkenes, skeletal rearrangements, and hydride shifts [22-24] It also has been used for several synthetically useful reachons, such as electrophilic aromatic substitution [25], reductions [26, 27], and oxidations [28] Trifluoroacetic acid is a good medium for the nitration of aromatic compounds Nitration of benzene or toluene with sodium nitrate in trifluoroacetic acid is almost quantitative after 4 h at room temperature [25] Under these conditions, toluene gives the usual mixture of mononitrotoluenes in an o m p ratio of 61 6 2 6 35 8 A trifluoroacetic acid medium can be used for the reduction of acids, ketones, and alcohols with sodium borohydnde [26] or triethylsilane [27] Diary Iketones are smoothly reduced by sodium borohydnde in trifluoroacetic acid to diarylmethanes (equation 13)... [Pg.946]

The reduction of aromatic compounds 1 by alkali metals in liquid ammonia in the presence of an alcohol is called the Birch reduction, and yields selectively the 1,4-hydrogenated product " 2. [Pg.43]

Polycyclic Aromatic Compounds and Their Reduction Products... [Pg.55]


See other pages where Reduction aromatic compounds is mentioned: [Pg.237]    [Pg.237]    [Pg.262]    [Pg.262]    [Pg.334]    [Pg.53]    [Pg.449]    [Pg.103]    [Pg.183]    [Pg.408]    [Pg.7]    [Pg.12]    [Pg.16]    [Pg.20]    [Pg.43]    [Pg.45]   
See also in sourсe #XX -- [ Pg.1009 , Pg.1010 , Pg.1011 ]

See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.273 , Pg.274 , Pg.275 , Pg.276 ]

See also in sourсe #XX -- [ Pg.604 ]

See also in sourсe #XX -- [ Pg.710 , Pg.712 ]

See also in sourсe #XX -- [ Pg.38 ]

See also in sourсe #XX -- [ Pg.256 , Pg.257 ]

See also in sourсe #XX -- [ Pg.843 , Pg.844 , Pg.845 ]

See also in sourсe #XX -- [ Pg.719 ]

See also in sourсe #XX -- [ Pg.1007 , Pg.1008 , Pg.1009 , Pg.1010 ]




SEARCH



Aromatic Amines and Other Reduction Products of Nitro Compounds

Aromatic compounds Birch reduction

Aromatic compounds Clemmensen reduction

Aromatic compounds Wolff-Kishner reduction

Aromatic compounds and aromaticity Birch reduction

Aromatic compounds dissolving-metal reduction

Aromatic compounds partial reduction

Aromatic compounds reductive silylations

Aromatic halogen compounds reductive dehalogenation

Aromatic nitro compounds reduction to hydroxylamines

Aromatic nitro compounds reduction with tin and hvdrochloric

Aromatic, reduction

Azoxy compounds aromatic, reduction

Birch reduction of aromatic compounds

Carbonyl compounds aromatic, reduction

Cathodic Reduction of Aromatic and Heterocyclic Halogen Compounds

Copper salts reduction, aromatic nitro compounds

Dinitro compounds, aromatic, partial reduction

Enantioselective reduction aromatic compounds

Hydrogen sulfide reduction, aromatic nitro compounds

Nitro compounds aromatic, reduction

Nitro compounds halogen-substituted aromatic, reduction

Nitro compounds, aromatic, reductive

Nitro compounds, aromatic, reductive cyclization with triethyl phosphite

Nitro-aromatic compounds reduction potential effect

Nitroso compounds aromatic, reduction

Oxidation and Reduction of Aromatic Compounds

Partial reduction, of aromatic compounds

Radicals, reduction aromatic compounds

Radicals, reduction with aromatic compounds

Reduction of aromatic compounds

Reduction of aromatic compounds to dihydroaromatics by sodium and ammonia

Reduction of aromatic nitro compound

Reductive Aromatization

With calcium, reduction aromatic compounds

With lithium, reduction aromatic compounds

© 2024 chempedia.info