Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds aromatic, reduction

Aromatic Carbonyl Compounds. Electrolytic reduction of aldehydes and ketones only leads to identifiable radical ions in nonaqueous solutions. Radical anions have been obtained from a number of aromatic aldehydes the principal representative of the series - benzaldehyde [138, 139] - and its 0- [140] and p-nitro derivatives [138, 140, 141] p-cyanobenzaldehyde [138] o- and p-dialdehydes [138, 140]. [Pg.30]

SchifT s bases A -Arylimides, Ar-N = CR2, prepared by reaction of aromatic amines with aliphatic or aromatic aldehydes and ketones. They are crystalline, weakly basic compounds which give hydrochlorides in non-aqueous solvents. With dilute aqueous acids the parent amine and carbonyl compounds are regenerated. Reduction with sodium and alcohol gives... [Pg.353]

The above reversible equation indicates that one mol of aluminium iso-propoxlde will reduce directly three mols of the carbonyl compound. It is generally desirable to use excess of the reductant except for aromatic aldehydes for the latter side reactions (e.g., 2RCHO-----> RCOOCH R Tischenko re-... [Pg.882]

Two classes of charged radicals derived from ketones have been well studied. Ketyls are radical anions formed by one-electron reduction of carbonyl compounds. The formation of the benzophenone radical anion by reduction with sodium metal is an example. This radical anion is deep blue in color and is veiy reactive toward both oxygen and protons. Many detailed studies on the structure and spectral properties of this and related radical anions have been carried out. A common chemical reaction of the ketyl radicals is coupling to form a diamagnetic dianion. This occurs reversibly for simple aromatic ketyls. The dimerization is promoted by protonation of one or both of the ketyls because the electrostatic repulsion is then removed. The coupling process leads to reductive dimerization of carbonyl compounds, a reaction that will be discussed in detail in Section 5.5.3 of Part B. [Pg.681]

The azlactones of a-benzoylaminocinnamic acids have traditionally been prepared by the action of hippuric acid (1, Ri = Ph) and acetic anhydride upon aromatic aldehydes, usually in the presence of sodium acetate. The formation of the oxazolone (2) in Erlenmeyer-Plochl synthesis is supported by good evidence. The method is a way to important intermediate products used in the synthesis of a-amino acids, peptides and related compounds. The aldol condensation reaction of azlactones (2) with carbonyl compounds is often followed by hydrolysis to provide unsaturated a-acylamino acid (4). Reduction yields the corresponding amino acid (6), while drastic hydrolysis gives the a-0X0 acid (5). ... [Pg.229]

Ruthenium is excellent for hydrogenation of aliphatic carbonyl compounds (92), and it, as well as nickel, is used industrially for conversion of glucose to sorbitol (14,15,29,75,100). Nickel usually requires vigorous conditions unless large amounts of catalyst are used (11,20,27,37,60), or the catalyst is very active, such as W-6 Raney nickel (6). Copper chromite is always used at elevated temperatures and pressures and may be useful if aromatic-ring saturation is to be avoided. Rhodium has given excellent results under mild conditions when other catalysts have failed (4,5,66). It is useful in reduction of aliphatic carbonyls in molecules susceptible to hydrogenolysis. [Pg.67]

Metal-induced reductive dimerization of carbonyl compounds is a useful synthetic method for the formation of vicinally functionalized carbon-carbon bonds. For stoichiometric reductive dimerizations, low-valent metals such as aluminum amalgam, titanium, vanadium, zinc, and samarium have been employed. Alternatively, ternary systems consisting of catalytic amounts of a metal salt or metal complex, a chlorosilane, and a stoichiometric co-reductant provide a catalytic method for the formation of pinacols based on reversible redox couples.2 The homocoupling of aldehydes is effected by vanadium or titanium catalysts in the presence of Me3SiCl and Zn or A1 to give the 1,2-diol derivatives high selectivity for the /-isomer is observed in the case of secondary aliphatic or aromatic aldehydes. [Pg.15]

Purely aromatic ketones generally do not give satisfactory results pinacols and resinous products often predominate. The reduction of ketonic compounds of high molecular weight and very slight solubility is facilitated by the addition of a solvent, such as ethanol, acetic acid or dioxan, which is miscible with aqueous hydrochloric acid. With some carbonyl compounds, notably keto acids, poor yields are obtained even in the presence of ethanol, etc., and the difficulty has been ascribed to the formation of insoluble polymolecular reduction products, which coat the surface of the zinc. The adffition of a hydrocarbon solvent, such as toluene, is beneficial because it keeps most of the material out of contact with the zinc and the reduction occurs in the aqueous layer at such high dilution that polymolecular reactions are largdy inhibited (see Section IV,143). [Pg.510]

R)-Benzoins and (/ )-2-hydroxypropiophcnonc derivatives are formed on a preparative scale by benzaldehyde lyase (BAL)-catalyzed C-C bond formation from aromatic aldehydes and acetaldehyde in aqueous buffer/DMSO solution with remarkable ease in high chemical yield and high optical purity (Eq. 8.112).303 Less-stable mixed benzoins were also generated via reductive coupling of benzoyl cyanide and carbonyl compounds by aqueous titanium(III) ions.304... [Pg.278]

Et2Zn also participates in the reductive coupling as a formal hydride source. Results for the Ni-catalyzed, Et2Zn-promoted homoallylation of carbonyl compounds with isoprene are summarized in Table 7 [30]. Et2Zn is so reactive that for the reaction with reactive aromatic aldehydes it causes direct ethylation of aldehydes, and the yields of homoallylation are diminished (runs 1 and 2). Unsaturated aldehydes seem to be subject to the Michael addition of Et2Zn. Accordingly, for the reaction with cinnamaldehyde, none of the expected homoallylation product is produced instead, the 1,4-addition product of Et2Zn, 3-phenylpentanal is produced exclusively (run 3). [Pg.200]

Samarium(II) iodide also allows the reductive coupling of sulfur-substituted aromatic lactams such as 7-166 with carbonyl compounds to afford a-hydroxyalkylated lactams 7-167 with a high anti-selectivity [74]. The substituted lactams can easily be prepared from imides 7-165. The reaction is initiated by a reductive desulfuration with samarium(ll) iodide to give a radical, which can be intercepted by the added aldehyde to give the desired products 7-167. Ketones can be used as the carbonyl moiety instead of aldehydes, with good - albeit slightly lower - yields. [Pg.523]

The reduction of aromatic nitro compounds to amino derivatives and cyclizations to various heterocyclic compounds are presented in Chapter 9. Recent advances are presented here. Reaction of 2-nitrobenzaldehyde with vinyl carbonyl compounds in the presence of 1,4-diazbi-cyclo[2.2.2]octane affords Baylis-Hillman products, the catalytic reduction of which results in direct cyclization to quinoline derivatives (Eq. 10.78).134... [Pg.355]

Among the different aromatic carbonyl compounds, aldehydes are probably the most useful class of products, as the highly reactive aldehyde group can be easily employed in numerous C-C-, and C-N-coup-ling reactions, reductions as well as other transformations. [Pg.108]

Since the electroreduction of ketones shown in Scheme 29 has been well established [1-3, 12, 62-65], one more recent interest in the electroreduction of carbonyl compounds is focused on the stereo-selective reduction of ketones. For example, the diastereo-selective cathodic coupling of aromatic ketones has been reported. In the presence of a chiral-supporting electrolyte, a low degree of enantioselectivity has been found [66] (Scheme 30). [Pg.209]

Iridium nanopartides also catalyze the hydrogenation of benzyhnethylketone, with high selectivity in reduction of the aromatic ring (92% selectivity in saturated ketone, 8% in saturated alcohol at 97% benzylmethylketone conversion). This preferential coordination of the aromatic ring can be attributed to steric effects that make carbonyl coordination difficult. Therefore, metallic iridium nanoparticles prepared in ILs may serve as active catalysts for the hydrogenation of carbonyl compounds in both solventless and biphasic conditions. [Pg.387]

Table 2 Formation Constants K), Fluorescence Maxima (Xmax), Fluorescence Lifetimes (x), the One-Electron Reduction Potentials (E°ed ) of the Singlet Excited States of Mg(C104)2, Sc(OTf)3 and MesSiOTf Complexes of Aromatic Carbonyl Compounds... Table 2 Formation Constants K), Fluorescence Maxima (Xmax), Fluorescence Lifetimes (x), the One-Electron Reduction Potentials (E°ed ) of the Singlet Excited States of Mg(C104)2, Sc(OTf)3 and MesSiOTf Complexes of Aromatic Carbonyl Compounds...
Like aldehyde, the ketone function provides sufficient activation on an aromatic ring for the nucleophiUc substitution. Reduction of the carbonyl group after incorporation of the F-fluoride ion yields F-alkyl aromatics [177]. This methodology using F for trimethylammonium exchange, then reduction of the carbonyl compound, have proved to be useful for the synthesis of a [2- F]fluo-rophenol at high specific activity [141] (Scheme 39). [Pg.235]

One of the classical methods for the synthesis of pyrazines involves dimerization of an a-amino carbonyl compound and subsequent aromatization. Cyclic dimerization of the a-amino ketone, which is formed by reduction of a-azido ketone 149 with triphenylphosphine, leads to the formation of a pyrazine derivative 150 (Scheme 40) <1994JOC6828>. Reduced Te also dimerized a-keto azide 149 to give pyrazine 150 <2006JOG2797>. [Pg.307]

There are very few reactions of real synthetic significance which proceed via condensation of two 1,3-electrophile-nucleophile species. Probably the most important of this latter type of reaction is the synthesis of pyrazines by self-condensation of an a-acylamino compound to the dihydropyrazine followed by aromatization (equation 132). The a-acylamino compounds, which dimerize spontaneously, are normally generated in situ, for example by treatment of a- hydroxy carbonyl compounds with ammonium acetate or by reduction of a-azido, -nitro or -oximino carbonyl compounds. Cyclodimerization of a-amino acids gives 2,5-dioxopiperazines (equation 133), many derivatives of which occur as natural products. Two further reactions which illustrate the 1,3-electrophile-nucleophile approach are outlined in equations (134) and (135), but su i processes are of little general utility. [Pg.86]

Anastasio, C., B. C. Faust, and C. J. Rao, Aromatic Carbonyl Compounds as Aqueous-Phase Photochemical Sources of Hydrogen Peroxide in Acidic Sulfate Aerosols, Fogs, and Clouds. 1. Non-Phenolic Methoxybenzaldehydes and Methoxyacetophe-nones with Reductants (Phenols), Environ. Sci. Techno ., 31, 218-232 (1997). [Pg.337]


See other pages where Carbonyl compounds aromatic, reduction is mentioned: [Pg.336]    [Pg.179]    [Pg.179]    [Pg.510]    [Pg.312]    [Pg.226]    [Pg.26]    [Pg.367]    [Pg.76]    [Pg.92]    [Pg.353]    [Pg.148]    [Pg.299]    [Pg.432]    [Pg.310]    [Pg.29]    [Pg.411]    [Pg.330]    [Pg.331]    [Pg.340]    [Pg.467]    [Pg.43]    [Pg.43]    [Pg.69]    [Pg.443]    [Pg.134]   
See also in sourсe #XX -- [ Pg.421 ]




SEARCH



Aromatic carbonyl

Aromatic carbonyl compounds

Aromatic compounds reduction

Aromatic, reduction

Carbonyl compounds reduction

Carbonyl compounds, reductive

Carbonyl reduction

Reduction carbonylation

Reductive Aromatization

© 2024 chempedia.info