Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds, formation from

Halogenation of aromatic compounds differs from the halogenation of alkenes, which do not require a Lewis Acid catalyst. The formation of the arenium ion results in the temporary loss of aromaticity, which has a higher activation energy compared to carbocation formation in alkenes. In other words, alkenes are more reactive and do not need to have the Br-Br or Cl-Cl bond weakened. Also, if the ring contains a strongly activating substituent such as -OH, -OR or amines, a catalyst is not necessary, however if a catalyst is used with excess bromine then a tribromide will be formed. [Pg.110]

Attempts to observe the aromatic cations in solution have only recently been made. There is a good deal of evidence (17, 31) of aromatic cation formation from work in low temperature glasses where the ions appear to be stable. Their identification from the spectra alone is, in most cases, a difficult matter because of the great similarity between the absorption spectra of the anions and cations. In the glasses, the identification is based, for the most part, on the premise of electron attachment to the solvent, generally a chlorinated compound, rather than to the aromatic solute. Further evidence is provided from scavenge effects. [Pg.70]

The compound-specific isotope values of aromatic compounds liberated from the macromolecular material exhibit that values of low molecular weight compounds Increase with increasing carbon number, while values for high molecular weight compounds decrease, indicating that bond formation and destruction was important during the formation of the macromolecular material 4). [Pg.251]

Figure 4.21 Schematic drawing of the formation of the complex with aromatic compounds starting from the pure CTAB structure... Figure 4.21 Schematic drawing of the formation of the complex with aromatic compounds starting from the pure CTAB structure...
Nitration at a rate independent of the concentration of the compound being nitrated had previously been observed in reactions in organic solvents ( 3.2.1). Such kinetics would be observed if the bulk reactivity of the aromatic towards the nitrating species exceeded that of water, and the measured rate would then be the rate of production of the nitrating species. The identification of the slow reaction with the formation of the nitronium ion followed from the fact that the initial rate under zeroth-order conditions was the same, to within experimental error, as the rate of 0-exchange in a similar solution. It was inferred that the exchange of oxygen occurred via heterolysis to the nitronium ion, and that it was the rate of this heterolysis which limited the rates of nitration of reactive aromatic compounds. [Pg.11]

Nitrations in acetic anhydride, or in solutions containing benzoyl nitrate ( 5.2) or dinitrogen pentoxide ( 4.2.3) have long been associated with the formation from some aromatics of higher proportions of o-nitro-compounds than are formed under other conditions. [Pg.93]

CoF is used for the replacement of hydrogen with fluorine in halocarbons (5) for fluorination of xylylalkanes, used in vapor-phase soldering fluxes (6) formation of dibutyl decalins (7) fluorination of alkynes (8) synthesis of unsaturated or partially fluorinated compounds (9—11) and conversion of aromatic compounds to perfluorocycHc compounds (see Fluorine compounds, organic). CoF rarely causes polymerization of hydrocarbons. CoF is also used for the conversion of metal oxides to higher valency metal fluorides, eg, in the assay of uranium ore (12). It is also used in the manufacture of nitrogen fluoride, NF, from ammonia (13). [Pg.178]

Tnfluoroacetic anhydnde in a mixture with sulfuric acid is an efficient reagent for the sulfonylation of aromatic compounds [44] The reaction of benzene with this system in nitromethane at room temperature gives diphenyl sulfone in 61% yield Alkyl and alkoxy benzenes under similar conditions form the corresponding diaryl sulfones in almost quantitative yield, whereas yields of sulfones from deactivated arenes such as chlorobenzene are substantially lower [44] The same reagent (tnfluoroacetic anhydride-sulfunc acid) reacts with adamantane and its derivatives with formation of isomeric adamantanols, adamantanones, and cyclic sultones [45]... [Pg.949]

The competitive method employed for determining relative rates of substitution in homolytic phenylation cannot be applied for methylation because of the high reactivity of the primary reaction products toward free methyl radicals. Szwarc and his co-workers, however, developed a technique for measuring the relative rates of addition of methyl radicals to aromatic and heteroaromatic systems. - In the decomposition of acetyl peroxide in isooctane the most important reaction is the formation of methane by the abstraction of hydrogen atoms from the solvent by methyl radicals. When an aromatic compound is added to this system it competes with the solvent for methyl radicals, Eqs, (28) and (29). Reaction (28) results in a decrease in the amount... [Pg.161]

This difference originates from the different heat capacities of the reaction mixtures. The large difference between the process heats could not be attributed to dilution of the aromatic compound in the nitric acid/water mixture. The difference increased by adding a larger amount of nitric acid.The heat of the solvent process, that was run in such a way that the heat flux was kept constant, only increased slightly due to the aromatic dilution by the acid added to the reaction mixture. In contrast, extra acid addition resulted in a significant rise of the thermal effect of the water process (to 209 kJ/kg), indicating that formation of a di-nitro compound proceeds. [Pg.374]

Besides the weak bonds listed in the previous table, there are other multiple bonds that endow the molecules in which they are situated with a positive enthalpy of formation. Such compounds are termed endothermic compounds. The danger they represent does not necessarily come from the fact that they are unstable, but is related to the exothermicity of their decomposition reaction. The most convincing examples are the acetylenic compounds, and in particular, acetylene. It is also the case for ethylene, aromatic compounds, imines and nitriles. [Pg.97]

One of the more significant classes of compounds resulting from and emitted by combustion sources include polycyclic aromatic hydrocarbons (PAHs) these species serve as nuclei for the formation of soot particles. Past studies have concluded that 85% of... [Pg.257]

R)-Benzoins and (/ )-2-hydroxypropiophcnonc derivatives are formed on a preparative scale by benzaldehyde lyase (BAL)-catalyzed C-C bond formation from aromatic aldehydes and acetaldehyde in aqueous buffer/DMSO solution with remarkable ease in high chemical yield and high optical purity (Eq. 8.112).303 Less-stable mixed benzoins were also generated via reductive coupling of benzoyl cyanide and carbonyl compounds by aqueous titanium(III) ions.304... [Pg.278]

This silylene formation from 27 under mild conditions permits the synthesis of a variety of interesting carbo- and heterocycles, most of which are new types of compounds. The results are summarized in Schemes 5 and 6. The reactions with benzene and naphthalene represent the first examples of [2+1] cycloadditions of a silylene with aromatic C=C double bonds.59 623 The reactions with carbon disulfide and isocyanide (Scheme 6) are also of great interest because of their unusual reaction patterns.62b... [Pg.252]

The formation of 151 from the phosphonate 171 could be proved only by indirect means. Electron-rich aromatic compounds such as N,N-diethylaniline and N,N,N, N -tetraethyl-m-phenylenediamine U0 1I9> and N-methylaniline 120> are phosphorylated in the para- and in the ortho- plus para-positions by 151. Furthermore, 151 also adds to the nitrogen lone pair of aniline to form the corresponding phosphor-amidate. Considerable competition between nucleophiles of various strengths for the monomeric methyl metaphosphate 151 — e.g. aromatic substitution of N,N-diethylaniline and reaction with methanol or aromatic substitution and reaction with the nitrogen lone pair in N-methylaniline — again underline its extraordinary non-selectivity. [Pg.112]

The reaction, formally speaking a [3 + 2] cycloaddition between the aldehyde and a ketocarbene, resembles the dihydrofuran formation from 57 a or similar a-diazoketones and alkenes (see Sect. 2.3.1). For that reaction type, 2-diazo-l,3-dicarbonyl compounds and ethyl diazopyruvate 56 were found to be suited equally well. This similarity pertains also to the reactivity towards carbonyl functions 1,3-dioxole-4-carboxylates are also obtained by copper chelate catalyzed decomposition of 56 in the presence of aliphatic and aromatic aldehydes as well as enolizable ketones 276). No such products were reported for the catalyzed decomposition of ethyl diazoacetate in the presence of the same ketones 271,272). The reasons for the different reactivity of ethoxycarbonylcarbene and a-ketocarbenes (or the respective metal carbenes) have only been speculated upon so far 276). [Pg.193]

Transition metal complexes have been used in a number of reactions leading to the direct synthesis of pyridine derivatives from acyclic compounds and from other heterocycles. It is pertinent also to describe two methods that have been employed to prepare difficultly accessible 3-alkyl-, 3-formyl-, and 3-acylpyridines. By elaborating on reported194,195 procedures used in aromatic reactions, it is possible to convert 3-bromopyridines to products containing a 3-oxoalkyl function196 (Scheme 129). A minor problem in this simple catalytic process is caused by the formation in some cases of 2-substituted pyridines but this is minimized by using dimethyl-formamide as the solvent.196... [Pg.376]


See other pages where Aromatic compounds, formation from is mentioned: [Pg.297]    [Pg.465]    [Pg.147]    [Pg.258]    [Pg.191]    [Pg.58]    [Pg.62]    [Pg.349]    [Pg.201]    [Pg.95]    [Pg.79]    [Pg.634]    [Pg.640]    [Pg.347]    [Pg.291]    [Pg.316]    [Pg.700]    [Pg.163]    [Pg.226]    [Pg.321]    [Pg.405]    [Pg.210]    [Pg.205]    [Pg.209]    [Pg.310]    [Pg.10]    [Pg.53]    [Pg.469]    [Pg.56]   


SEARCH



Aromatic amines formation from nitro compounds

Aromatic compounds radical formation from

Aromatic compounds, formation from carbohydrates

Aromatic formation

Aromatics formation

From aromatic compounds

© 2024 chempedia.info