Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous ionic reactions acid-base

The alkene is allowed to react at low temperatures with a mixture of aqueous hydrogen peroxide, base, and a co-solvent to give a low conversion of the alkene (29). These conditions permit reaction of the water-insoluble alkene and minimise the subsequent ionic reactions of the epoxide product. Phase-transfer techniques have been employed (30). A variation of this scheme using a peroxycarbimic acid has been reported (31). [Pg.304]

In addition to simple dissolution, ionic dissociation and solvolysis, two further classes of reaction are of pre-eminent importance in aqueous solution chemistry, namely acid-base reactions (p. 48) and oxidation-reduction reactions. In water, the oxygen atom is in its lowest oxidation state (—2). Standard reduction potentials (p. 435) of oxygen in acid and alkaline solution are listed in Table 14.10- and shown diagramatically in the scheme opposite. It is important to remember that if or OH appear in the electrode half-reaction, then the electrode potential will change markedly with the pH. Thus for the first reaction in Table 14.10 O2 -I-4H+ -I- 4e 2H2O, although E° = 1.229 V,... [Pg.628]

Using Environmental Examples to Teach About Acids. Acid-base reactions are usually presented to secondary students as examples of aqueous equilibrium (2). In their study of acids and bases, students are expected to master the characteristic properties and reactions. They are taught to test the acidity of solutions, identify familiar acids and label them as strong or weak. The ionic dissociation of water, the pH scale and some common reactions of acids are also included in high school chemistry. All of these topics may be illustrated with examples related to acid deposition (5). A lesson plan is presented in Table I. [Pg.468]

C17-0119. Aqueous solutions of Na2 SO3 and CH3 CO2 H are mixed, (a) List the major species in each solution, (b) Write the net ionic reaction that occurs on mixing, (c) Identify the acid, base, conjugate acid, and conjugate base. [Pg.1269]

In this chapter, you will continue your study of acid-base reactions. You will find out how ions in aqueous solution can act as acids or bases. Then, by applying equilibrium concepts to ions in solution, you will be able to predict the solubility of ionic compounds in water and the formation of a precipitate. [Pg.418]

Note that A is called the conjugate base of HA and BH+ the conjugate acid of B. Proton transfer reactions as described by Eq. 8-1 are usually very fast and reversible. It makes sense then that we treat such reactions as equilibrium processes, and that we are interested in the equilibrium distribution of the species involved in the reaction. In this chapter we confine our discussion to proton transfer reactions in aqueous solution, although in some cases, such reactions may also be important in nonaqueous media. Our major concern will be the speciation of an organic acid or base (neutral versus ionic species) in water under given conditions. Before we get to that, however, we have to recall some basic thermodynamic aspects that we need to describe acid-base reactions in aqueous solution. [Pg.246]

Equilibria govern diverse phenomena from the folding of proteins to the action of acid rain on minerals to the aqueous reactions used in analytical chemistry. This chapter introduces equilibria for the solubility of ionic compounds, complex formation, and acid-base reactions. Chemical equilibrium provides a foundation not only for chemical analysis, but also for other subjects such as biochemistry, geology, and oceanography. [Pg.96]

Any ionic solid, such as ammonium chloride, is called a salt. In a formal sense, a salt can be thought of as the product of an acid-base reaction. When an acid and base react, they are said to neutralize each other. Most salts containing cations and anions with a single positive and negative charge are strong electrolytes—they dissociate nearly completely into ions in dilute aqueous solution. Thus, ammonium chloride gives NH and Cl- in water ... [Pg.105]

Acid-base neutralization reactions are processes in which an acid reacts with a base to yield water plus an ionic compound called a salt. You might recall from Section 2.9 that we defined acids as compounds that produce H+ ions when dissolved in water and bases as compounds that produce OH- ions when dissolved in water. Thus, the driving force behind a neutralization reaction is the production of the stable covalent water molecule by removal of H + and OH- ions from solution. The reaction between hydrochloric acid and aqueous sodium hydroxide to yield water plus aqueous sodium chloride is a typical example ... [Pg.116]

There are three important classes of aqueous reactions. Precipitation reactions occur when solutions of two ionic substances are mixed and a precipitate falls from solution. To predict whether a precipitate will form, you must know the solubility of each potential product. Acid-base neutralization reactions occur when an acid is mixed with a base, yielding water and a salt. The neutralization of a strong acid with a strong base can be written as a net ionic equation, in which nonparticipating, spectator ions are not specified ... [Pg.148]

The presence of H3 0+ or HO may alter drastically the observed reaction rate either because they catalyse the reaction (acid or base catalysis, see Section 3.2.3 for the Aldol reaction, and Chapter 11) or because of ionic strength effects. Proper pH control in an aqueous solution will require a buffer system which is described by the appropriate version of the Henderson-Hasselbach equation, according to whether the acid or base is the charged species ... [Pg.61]

All the reactions discussed in the previous section could be described as acid/base phenomena, defining acids and bases quite liberally. The importance of ionic equilibria in aqueous solution was recognised in the 1880s by Arrhenius, who proposed that acids were sources of H+(aq) while bases were sources of OH-(aq), and it was soon realised that this definition was closely related to the self-dissociation of water ... [Pg.327]

The absorption of species from the atmosphere is common to all electrolyte solutions and clearly the absorption of water is the biggest issue. This is not solely confined to ionic liquids, however, as all electroplaters who deal with aqueous solutions of acids know, if the solution is not heated then the tank will overflow from absorption of atmospheric moisture after some time. In the aqueous acid the inclusion of water is not a major issue as it does not significantly affect the current efficiency or potential window of the solution. Water absorption is also not such a serious issue with eutectic-based ionic liquids and the strong Lewis acids and bases strongly coordinate the water molecules in solution. The presence of up to 1 wt.% water can be tolerated by most eutectic-based systems. Far from having a deleterious effect, water is often beneficial to eutectic-based liquids as it decreases the viscosity, increases the conductivity and can improve the rate of the anodic reaction allowing better surface finishes. Water can even be tolerated in the chloroaluminate liquids to a certain extent [139] and it was recently shown that the presence of trace HQ, that results from hydrolysis of the liquid, is beneficial for the removal of oxide from the aluminum anode [140]. [Pg.337]

As seen in Chapters 4 and 5, aqueous cations and anions are formed by the dissolution of metal oxides and acid phosphates. Electrostatic (Coulomb) force attracts the oppositely charged ions to each other and stacks them in periodic configurations. That results in an ionic crystal structure. Thus, the ionic bond is one of the main mechanisms that is responsible for forming the acid-base reaction products. [Pg.86]

For example, when cyclohexylamine is treated with aqueous HCl, it is protonated, forming an ammonium salt. Because the ammonium salt is ionic, it is soluble in water, but insoluble in organic solvents. A similar acid-base reaction does not occur with other organic compounds like alcohols, which are much less basic. [Pg.966]

A great many reactions are carried out in a convenient solvent for reactants and products. Dissolved reactants can be rapidly mixed, and the reaction process is easily handled. Water is a specially favored solvent because its polar structure allows a broad range of polar and ionic species to be dissolved. Water itself is partially ionized in solution, liberating and OH ions that can participate in reactions with the dissolved species. This leads to the important subject of acid-base equilibria in aqueous solutions (see Chapter 15), which is based on the equilibrium principles developed in this chapter. We limit the discussion in this subsection to cases in which the solvent does not participate in the reaction. [Pg.576]

Chapters 10 and 11 describe the special properties of liquid water. Because of its substantial dipole moment, water is especially effective as a solvent, stabilizing both polar and ionic solutes. Water is not only the solvent, but also participates in acid-base reactions as a reactant. Water plays an integral role in virtually all biochemical reactions essential to the survival of living organisms these reactions involve acids, bases, and ionic species. In view of the wide-ranging importance of these reactions, we devote the remainder of this chapter to acid-base behavior and related ionic reactions in aqueous solution. The Bronsted-Lowry definition of acids and bases is especially well suited to describe these reactions. [Pg.629]

So far we have mainly looked at organic molecules, or their ionic derivatives, reacting with an acid or base in an aqueous environment. Before we look further at the acid/base reactions of organic molecules in a non-aqueous solvent, it is instructive to look more closely at the reaction of a general... [Pg.124]

One of the most interesting things about acids and bases is that they can react with each other in such a way as to render each other harmless. A neutralization reaction occurs when aqueous solutions of an acid and a base react with each other to produce a salt (ionic compound) and water. The general format for neutralization reaction is this acid + base salt + water... [Pg.307]

The solubility of carbon dioxide in aqueous and non-aqueous solutions depends on its partial pressure (via Henry s law), on temperature (according to its enthalpy of solution) and on acid-base reactions within the solution. In aqueous solutions, the equilibria forming HCO3 and CO3 depend on pH and ionic strength the presence of metal ions which form insoluble carbonates may also be a factor. Some speculation is made about reactions in nonaqueous solutions, and how thermodynamic data may be applied to reduction of CO2 to formic acid, formaldehyde, or methanol by heterogenous catalysis, photoreduction, or electrochemical reduction. [Pg.8]

The polymerization of N-carboxy anhydrides (NCA s) is a complicated process that Is difficult to study. The sensitivity of NCA s to moisture and other Impurities, the limited solubility of the products of NCA polymerizations In most solvents that are suitable for anionic polymerizations, the tendency of NCA s to associate with polypeptides, leading to enhanced monomer concentrations In the vicinity of growing polypeptide chains, the general cosplexlty of Ionic reactions in non-aqueous solvents and the diversity of possible mechanisms for amide bond formation or destruction. Including catalysis by COj, acids, bases, etc., collectively make It difficult to establish mechanisms for NCA polymerizations. [Pg.67]


See other pages where Aqueous ionic reactions acid-base is mentioned: [Pg.424]    [Pg.50]    [Pg.424]    [Pg.109]    [Pg.1244]    [Pg.319]    [Pg.27]    [Pg.109]    [Pg.9]    [Pg.60]    [Pg.294]    [Pg.252]    [Pg.53]    [Pg.317]    [Pg.575]    [Pg.81]    [Pg.736]    [Pg.51]    [Pg.60]    [Pg.248]    [Pg.302]   


SEARCH



Acid base reactions

Aqueous base

Aqueous ionic reactions

Aqueous reactions

BaSe, ionicity

Bases, acid-base reactions

Ionic acidic

Ionic aqueous

Ionic reactions

Reaction aqueous acids

© 2024 chempedia.info