Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications ablation

Laser based mass spectrometric methods, such as laser ionization (LIMS) and laser ablation in combination with inductively coupled plasma mass spectrometry (LA-ICP-MS) are powerful analytical techniques for survey analysis of solid substances. To realize the analytical performances methods for the direct trace analysis of synthetic and natural crystals modification of a traditional analytical technique was necessary and suitable standard reference materials (SRM) were required. Recent developments allowed extending the range of analytical applications of LIMS and LA-ICP-MS will be presented and discussed. For example ... [Pg.425]

The large variability in elemental ion yields which is typical of the single-laser LIMS technique, has motivated the development of alternative techniques, that are collectively labeled post-ablation ionization (PAI) techniques. These variants of LIMS are characterized by the use of a second laser to ionize the neutral species removed (ablated) from the sample surface by the primary (ablating) laser. One PAI technique uses a high-power, frequency-quadrupled Nd-YAG laser (A, = 266 nm) to produce elemental ions from the ablated neutrals, through nonresonant multiphoton ionization (NRMPI). Because of the high photon flux available, 100% ionization efflciency can be achieved for most elements, and this reduces the differences in elemental ion yields that are typical of single-laser LIMS. A typical analytical application is discussed below. [Pg.588]

R. W. Odom and B. Schueler. Laser Microprobe Mass Spectrometry Ion and Neutral Analysis, in Lasers and Mass Spectrometry (D. M. Lubman, ed.) Oxford University Press, Oxford, 1990. Presents a useful discussion of LIMS instrumental issues, including the post-ablation ionization technique. Several anal)n ical applications are presented. [Pg.597]

The applications of the unsaturated polyester resins were increased in the late 1960s by the introduction of water-extended polyesters. In these materials water is dispersed into the resin in very tiny droplets (ca 2-5 p.m diameter). Up to 90% of the system can consist of water but more commonly about equal parts of resin and water are used. The water component has two basic virtues in this system it is very cheap and because of its high specific heat it is a good heat sink for moderating cure exotherms and also giving good heat shielding properties of interest in ablation studies. [Pg.708]

So far powerful lasers with picosecond to nanosecond pulse duration have usually been used for the ablation of material from a solid sample. The very first results from application of the lasers with femtosecond pulse duration were published only quite recently. The ablation thresholds vary within a pretty wide interval of laser fluences of 0.1-10 J cm , depending on the type of a sample, the wavelength of the laser, and the pulse duration. Different advanced laser systems have been tested for LA ... [Pg.232]

Initial results prove the high potential of LA-based hyphenated techniques for depth profiling of coatings and multilayer samples. These techniques can be used as complementary methods to other surface-analysis techniques. Probably the most reasonable application of laser ablation for depth profiling would be the range from a few tens of nanometers to a few tens of microns, a range which is difficult to analyze by other techniques, e. g. SIMS, SNMS,TXRE, GD-OES-MS, etc. The lateral and depth resolution of LA can both be improved by use of femtosecond lasers. [Pg.240]

Though short fiber-reinforced mbber composites find application in hose, belt, tires, and automotives [57,98,133,164] recent attention has been focused on the suitability of such composites in high-performance applications. One of the most important recent applications of short fiber-mbber composite is as thermal insulators where the material will protect the metallic casing by undergoing a process called ablation, which is described in a broad sense as the sacrificial removal of material to protect stmcrnres subjected to high rates of heat transfer [190]. Fiber-reinforced polymer composites are potential ablative materials because of their high specific heat, low thermal conductivity, and ability of the fiber to retain the char formed during ablation [191-194]. [Pg.382]

Laser ablation of polymer films has been extensively investigated, both for application to their surface modification and thin-film deposition and for elucidation of the mechanism [15]. Dopant-induced laser ablation of polymer films has also been investigated [16]. In this technique ablation is induced by excitation not of the target polymer film itself but of a small amount of the photosensitizer doped in the polymer film. When dye molecules are doped site-selectively into the nanoscale microdomain structures of diblock copolymer films, dopant-induced laser ablation is expected to create a change in the morphology of nanoscale structures on the polymer surface. [Pg.204]

Wang, Z., Masuo, S., Machida, S. and Itaya, A. (2005) Application of dopant-induced laser ablation to site-selective modification of sea-island structures of polystyrene-fclock-poly(4-vinylpyridine) films. Jpn. J. Appl. Phys., 44, L402-L404. [Pg.222]

The increasing application of laser ablation or induced techniques for local and bulk analysis, whereby either the sampled vapor or the excited light becomes trans-... [Pg.142]

Horn I, Rudnick RL, McDonongh WF (2000) Precise elemental and isotope ratio determination by simultaneous solution nebnlization and laser ablation-ICP-MS Application to U-Pb geochronology. ChemGeol 164 281-301... [Pg.56]

There are a few drawbacks to this method. Using 4 or 5 TIMS measurements to produce a U-series date profile across a bone is time consuming, although a single reliable U-series date is surely worth hundreds where the accuracy is not known. In future, the application of Laser-Ablation ICP-MS to measuring profiles will significantly reduce the analytical effort required to obtain a date. [Pg.615]

The application of the Diffusion-Adsorption model to dating bone (by AP) was funded by a NERC grant to Robert Hedges at the Research Laboratory for Archaeology, University of Oxford. The U-series date profiles shown here were measured at the NERC U-series dating facility at Open University, and the laser ablation U-series profile was measured at the Research School for Earth Sciences, Australian National University, Canberra in collaboration with Steve Eggins and Rainer Griin. [Pg.626]

Structure Development and Applications 4.1 Surface Protected Ablator (SPA)... [Pg.309]

The SP-ablator allows higher aerodynamic loads with lower surface/mass ratio for heat shields, and should be ideally suited for moon, mars, or other interplanetary return missions. These shields are also suitable for cost-effective flight models of winged reentry capsules. A large application potential can be seen for nozzles and combustion chambers or housings of rocket engines. Dornier plans to manufacture a heat shield for the Mirka capsule one meter in diameter. The C/SiC-cover will be fabricated in one piece. [Pg.309]

Prochazka M., Mojzes P., Stepanek J., Vlckova B., Turpin P.Y., Probing applications of laser ablated Ag colloids in SERS spectroscopy Improvement of ablation procedure and SERS spectral testing, Anal. Chem. 1997 69 5103-5108. [Pg.255]

Despite the frequent use of arc-discharge and laser ablation techniques, both of these two methods suffer from some drawbacks. The first is that both methods involve evaporating the carbon source, which makes it difficult to scale up production to the industrial level using these approaches. Second, vaporization methods grow CNTs in highly tangled forms, mixed with unwanted forms of carbon and/or metal species. The CNTs thus produced are difficult to purify, manipulate, and assemble for building nanotube-device architectures in practical applications. [Pg.486]

Photo/Thermal Reactions. The fifth basic class of photopolymer chemistry that can be used in commercial applications is based more on physical changes in a polymer-based matrix than on chemical reactions. A recent application of this technology is the laser ablation (77) of an organic coating on a flat support to directly produce a printing plate. The availability of newer high energy lasers will allow more applications to be based on the photo/thermal mechanism. [Pg.5]


See other pages where Applications ablation is mentioned: [Pg.437]    [Pg.437]    [Pg.26]    [Pg.531]    [Pg.231]    [Pg.234]    [Pg.240]    [Pg.348]    [Pg.2]    [Pg.154]    [Pg.146]    [Pg.121]    [Pg.2]    [Pg.749]    [Pg.212]    [Pg.165]    [Pg.223]    [Pg.54]    [Pg.1436]    [Pg.614]    [Pg.626]    [Pg.648]    [Pg.655]    [Pg.189]    [Pg.152]    [Pg.309]    [Pg.200]    [Pg.244]    [Pg.252]    [Pg.272]    [Pg.273]    [Pg.318]    [Pg.28]   


SEARCH



Ablate

Ablation

Ablator

Ablators

Geological applications laser ablation

Laser ablation applications

Laser ablation, analytical method Applications

Laser ablation-inductively coupled other applications

Selected applications of laser ablation sampling prior to atomization-ionization-excitation-detection

© 2024 chempedia.info