Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Application areas examples quality control

Chromatographic techniques, particularly gas phase chromatography, are used throughout all areas of the petroleum industry research centers, quality control laboratories and refining units. The applications covered are very diverse and include gas composition, search and analysis of contaminants, monitoring production units, feed and product analysis. We will show but a few examples in this section to give the reader an idea of the potential, and limits, of chromatographic techniques. [Pg.70]

Like XPS, the application of AES has been very widespread, particularly in the earlier years of its existence more recently, the technique has been applied increasingly to those problem areas that need the high spatial resolution that AES can provide and XPS, currently, cannot. Because data acquisition in AES is faster than in XPS, it is also employed widely in routine quality control by surface analysis of random samples from production lines of for example, integrated circuits. In the semiconductor industry, in particular, SIMS is a competing method. Note that AES and XPS on the one hand and SIMS/SNMS on the other, both in depth-profiling mode, are complementary, the former gaining signal from the sputter-modified surface and the latter from the flux of sputtered particles. [Pg.42]

NMR spectroscopy is one of the most widely used analytical tools for the study of molecular structure and dynamics. Spin relaxation and diffusion have been used to characterize protein dynamics [1, 2], polymer systems[3, 4], porous media [5-8], and heterogeneous fluids such as crude oils [9-12]. There has been a growing body of work to extend NMR to other areas of applications, such as material science [13] and the petroleum industry [11, 14—16]. NMR and MRI have been used extensively for research in food science and in production quality control [17-20]. For example, NMR is used to determine moisture content and solid fat fraction [20]. Multi-component analysis techniques, such as chemometrics as used by Brown et al. [21], are often employed to distinguish the components, e.g., oil and water. [Pg.163]

The following recommendations represent integrated approaches to IQC that are suitable for many types of analysis and applications areas. Managers of laboratory quality systems will have to adapt the recommendations to the demands of their own particular requirements. Such adoption could be implemented, for example, by adjusting the number of duplicates and control material inserted into a run, or by the inclusion of any additional measures favoured in the particular application area. The procedure finally chosen and its accompanying decision rules must be... [Pg.87]

Natural products, from plants and foods to rocks and minerals, are complicated systems, but their analysis by Raman spectroscopy is a growing area. Most examples come from quality control laboratories, motivated to replace current time-consuming sample preparation and analysis steps with a less labor-intensive, faster technique but most authors anticipated the eventual application to process control. Often a method will be practiced in a trading house or customs facility to distinguish between items perceived to be of different qualities, and thus prices. [Pg.220]

Vacancy chromatography has a number of applications areas in practice, none of which appear to have been extensively exploited. One particularly interesting application is that of quality control. If a particular product has a number of components present, and their relative composition must be kept constant as in, for example, a pharmaceutical product, Vacancy Chromatography can provide a particularly simple analytical procedure for quality control. The mobile phase is made up containing the components of the product in the specified proportions, but at a low concentration suitable for LC analysis. A sample of the product is dissolved in some pure mobile phase at the same total mass concentration as the standards in the mobile phase. A sample is then injected on the column. If the product contains the components in the specified proportion, no peaks will appear on the chromatogram as the sample and mobile phase will have the same composition. If any component is in excess, it will show a positive peak. If any component is present below specifications, it will show a negative peak. The size of the peak will provide an accurate measure of the difference between the sample and that of the required standard. [Pg.59]

One area of application is the analysis of flavours in foods in order to ascertain, for example, the ripeness of fruit or the maturity of cheeses [42]. For this purpose dendrimers were used which can distinguish certain carbonyl compounds such as ketones, aldehydes, esters, and amides, also in mixtures. For example, measurement of the concentration of 2-heptanal is of importance specifically for determination of the degree of ripeness of apples. The concentration of this compound increases significantly with increasing ripeness [43]. This technique can also serve as an electronic nose for quality control of high-value products such as saffron, which in powder form may contain undesired contaminants (adulterants) such as curcuma, safflower, or marigold. [Pg.305]

SIMS is used for quantitative depth profile determinations of trace elements in solids. These traces can be impurities or deliberately added elements, such as dopants in semiconductors. Accurate depth prohles require uniform bombardment of the analyzed area and the sputter rate in the material must be determined. The sputter rate is usually determined by physical measurement of the crater depth for multilayered materials, each layer may have a unique sputter rate that must be determined. Depth prohle standards are required. Government standards agencies like NIST have such standard reference materials available for a limited number of applications. For example, SRM depth profile standards of phosphorus in silicon, boron in silicon, and arsenic in silicon are available from NIST for calibration of SIMS instmments. P, As, and B are common dopants in the semiconductor industry and their accurate determination is critical to semiconductor manufacture and quality control. [Pg.914]

The friability of a rigid foam is not an easy property to determine, and it is seldom used as a quality control measurement. However, for certain materials such as phenol-formaldehyde foam it can be a useful tool in formulation work to ensure that the product is suitable for the application area. In certain instances the test method is best adapted to the foam being tested, for example the time duration of the test may be shortened if the material is being abraded too harshly. [Pg.387]

The research field of metal-oxide interfaces is very active, partly because of their important technological applications. For example, in heterogeneous catalysis, oxide powders or porous compounds, such as zeolites, are used as supports for transition metal clusters, because they provide a large - external or internal - specific area of contact with the metal. In many cases, it is also recognized that they modify the cluster reactivity (Dufour and Perdereau, 1988). Oxide surfaces, such as those of MgO or SrTiOs, whose quality and planarity are well controlled, have been used as substrates for the deposition of thin superconductor films. This has been particularly important since the discovery that some copper oxide based compounds remain superconductors above liquid nitrogen temperature. Thin metallic films are also deposited on various oxides in the fabrication of optical devices, or on glass in the fabrication of mirrors. [Pg.128]


See other pages where Application areas examples quality control is mentioned: [Pg.244]    [Pg.154]    [Pg.31]    [Pg.3]    [Pg.192]    [Pg.64]    [Pg.492]    [Pg.229]    [Pg.162]    [Pg.118]    [Pg.520]    [Pg.733]    [Pg.305]    [Pg.271]    [Pg.129]    [Pg.266]    [Pg.709]    [Pg.489]    [Pg.203]    [Pg.119]    [Pg.2728]    [Pg.484]    [Pg.224]    [Pg.77]    [Pg.71]    [Pg.87]    [Pg.16]    [Pg.4]    [Pg.129]    [Pg.223]    [Pg.239]    [Pg.450]    [Pg.53]    [Pg.141]    [Pg.216]    [Pg.3]    [Pg.522]   
See also in sourсe #XX -- [ Pg.556 ]




SEARCH



Application areas examples

Control application

Control areas

Controlled areas

Example applications

Quality control applications

© 2024 chempedia.info