Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antimony recycling

Recycling of antimony provides a large proportion of the domestic supply of antimony. Secondary antimony is obtained from the treatment of antimony-hearing lead and tin scrap such as battery plates, type metal, beating metal, antimonial lead, etc. The scrap are charged iato blast furnaces, reverberatory furnaces, or rotary furnaces, and an impure lead bulHon or lead alloy is produced. Pure lead or antimony is then added to meet the specifications of the desired lead—antimony alloy. [Pg.196]

The final ceU product contains 250—300 g/L H2SO in the last stages of electrolyte purification, and antimony and bismuth precipitate, resulting in heavily contaminated cathodes that are recycled through the smelter. Arsenic and hydrogen evolved at the cathodes at these later stages react to form arsine, and hoods must be provided to collect the toxic gas. [Pg.203]

As mentioned above, approximately 7% of the total sulfur present in lead ore is emitted as S02. The remainder is captured by the blast furnace slag. The blast furnace slag is composed primarily of iron and silicon oxides, as well as aluminum and calcium oxides. Other metals may also be present in smaller amounts, including antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, molybdenum, silver, and zinc. This blast furnace slag is either recycled back into the process or disposed of in piles on site. About 50 to 60% of the recovery furnace output is slag and residual lead, which are both returned to the blast furnace. The remainder of this dross furnace output is sold to copper smelters for recovery of the copper and other precious metals. [Pg.90]

Refining operations have two principal wastestreams, waste electrolyte and cathode and anode washwater. Spent electrolyte is normally recycled. A bleed stream is treated to reduce copper and impurity concentration. Varying degrees of treatment are necessary because of the differences in the anode copper. Anode impurities, including nickel, arsenic, and traces of antimony and bismuth, may be present in the effluent if the spent electrolyte bleed stream is discharged. Tables 3.14 and 3.15 present classical and toxic pollutant data for raw wastewater in this subcategory. [Pg.104]

Bi X, Li Z, Zhuang X, Han Z, Yang W (2011) High levels of antimony in dust from e-waste recycling in southeastern China. Sci Total Environ 409(23) 5126-5128... [Pg.308]

In this process, the liquid butane feed is employed first to recover aluminum chloride and antimony chloride from spent catalyst. This is accomplished in a scrubber, from which insoluble complex is continuously discarded. The butane stream then picks up recycled hydrogen chloride and enters the reactor, where mechanical agitation causes intimate contacting with an equal volume of catalyst. The undesirable complex formed in... [Pg.116]

Synthesis of sulfur tetrafluoride by fluorination of sulfur monochloride with elemental fluorine in the presence of antimony(III) chloride or phosphorus trichloride as a catalyst has also been reported 22-23 sulfur dichloride, which is formed as the byproduct, is converted back to sulfur monochloride in an absorber filled with granulated sulfur and then recycled. [Pg.323]

The raw minerals mined from natural deposits comprise mixtures of different specific minerals. An early step in mineral processing is to use crushing and grinding to free these various minerals from each other. In addition, these same processes may be used to reduce the mineral particle sizes to make them suitable for a subsequent separation process. Non-ferrous metals such as copper, lead, zinc, nickel, cobalt, molybdenum, mercury, and antimony are typically produced from mineral ores containing these metals as sulfides (and sometimes as oxides, carbonates, or sulfates) [91,619,620], The respective metal sulfides are usually separated from the raw ores by flotation. Flotation processes are also used to concentrate non-metallic minerals used in other industries, such as calcium fluoride, barium sulfate, sodium and potassium chlorides, sulfur, coal, phosphates, alumina, silicates, and clays [91,619,621], Other examples are listed in Table 10.2, including the recovery of ink in paper recycling (which is discussed in Section 12.5.2), the recovery of bitumen from oil sands (which is discussed further in Section 11.3.2), and the removal of particulates and bacteria in water and wastewater treatment (which is discussed further in Section 9.4). [Pg.245]

In the process (Fig. 1), anhydrous hydrogen fluoride and carbon tetrachloride (or chloroform) are bubbled through molten antimony pentachloride catalyst in a steam-jacketed atmospheric pressure reactor at 65 to 95°C. The gaseous mixture of fluorocarbon and unreacted chlorocarbon is distilled to separate and recycle the chlorocarbon to the reaction. Waste hydrogen chloride is recycled by use of water absorption and the last traces of hydrogen chloride and chlorine are removed in a caustic scrubbing tower. [Pg.242]

Waste from electrical and electronic equipment arises at the sorting plant, where the frame, the printed circuit board PCB, the cathode ray tube, etc. are separated for recycling. The remaining plastics fraction is in part flame-retarded, hence contains brominated and antimony compounds. The number of WEEE recycling plants is growing, so that the logistics are no longer a major problem. [Pg.28]

Some of the antimony produced in the United States is recycled from old lead storage batteries used in cars and trucks. [Pg.23]

FP-4 (zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony)—are only slightly soluble (<1 wt %) in the process alloy, thus will partition between both product streams. The process, as presented, offers no method of FP-4 removal and possibly an unwanted increase in these products would occur if the fuel were to be recycled. However, it would be possible to separate the FP-4 from the plutonium/thorium stream by recovering the plutonium/thorium by hydriding. The FP-4 do not form stable hydrides and would remain in solution. [Pg.204]

Copper electrorefining plays a major role in the production and recycling of copper. In the production of copper, copper-bearing sulfide concentrates are first smelted to copper matte. The molten matte is oxidized to blister copper by a Peirce-Smith converter and the blister copper is fire refined and cast to copper anodes. Blister copper contains about 99% copper and impurities such as arsenic, bismuth, iron, nickel, lead, antimony, selenium, tellurium, and precious metals. It is cast into flat anodes, most often on a rotating horizontal wheel. The mold shape includes lugs by which the anodes are... [Pg.187]


See other pages where Antimony recycling is mentioned: [Pg.266]    [Pg.266]    [Pg.139]    [Pg.196]    [Pg.197]    [Pg.199]    [Pg.130]    [Pg.136]    [Pg.549]    [Pg.123]    [Pg.528]    [Pg.724]    [Pg.87]    [Pg.88]    [Pg.514]    [Pg.792]    [Pg.125]    [Pg.501]    [Pg.71]    [Pg.713]    [Pg.844]    [Pg.200]    [Pg.466]    [Pg.1151]    [Pg.1161]    [Pg.1164]    [Pg.81]    [Pg.212]    [Pg.71]    [Pg.452]    [Pg.462]    [Pg.465]    [Pg.549]    [Pg.196]    [Pg.197]    [Pg.199]   
See also in sourсe #XX -- [ Pg.661 ]




SEARCH



Recycling antimony from

© 2024 chempedia.info