Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anisotropic liquids solvents

IVTematic liquid crystals provide an anisotropic liquid solvent in which highly resolved nuclear magnetic resonance (NMR) spectra of partially oriented solute molecules have been observed (2 4, 10-14, 16). The following properties of nematic liquid crystals are important in this respect ... [Pg.58]

If one follows the solution viscosity in concentrated sulfuric acid with increasing polymer concentration, then one observes first a rise, afterwards, however, an abrupt decrease (about 5 to 15%, depending on the type of polymers and the experimental conditions). This transition is identical with the transformation of an optical isotropic to an optical anisotropic liquid crystalline solution with nematic behavior. Such solutions in the state of rest are weakly clouded and become opalescent when they are stirred they show birefringence, i.e., they depolarize linear polarized light. The two phases, formed at the critical concentration, can be separated by centrifugation to an isotropic and an anisotropic phase. A high amount of anisotropic phase is desirable for the fiber properties. This can be obtained by variation of the molecular weight, the solvent, the temperature, and the polymer concentration. [Pg.288]

McKean 182> considered the matrix shifts and lattice contributions from a classical electrostatic point of view, using a multipole expansion of the electrostatic energy to represent the vibrating molecule and applied this to the XY4 molecules trapped in noble-gas matrices. Mann and Horrocks 183) discussed the environmental effects on the IR frequencies of polyatomic molecules, using the Buckingham potential 184>, and applied it to HCN in various liquid solvents. Decius, 8S) analyzed the problem of dipolar vibrational coupling in crystals composed of molecules or molecular ions, and applied the derived theory to anisotropic Bravais lattices the case of calcite (which introduces extra complications) is treated separately. Freedman, Shalom and Kimel, 86) discussed the problem of the rotation-translation levels of a tetrahedral molecule in an octahedral cell. [Pg.72]

A number of important process parameters were investigated to find out their effect on pitch characteristics and yield of the toluene and quinoline insolubles. The pitches produced were characterized by solvent analysis, NMR, thermal, and elemental analysis. Insolubles in toluene, pyridine and quinoline were used because these fractions represent the fusable and infusable anisotropic liquid crystal fraction formed in the pitch. [Pg.127]

Liquid crystals are usually excellent solvents for other organic compounds. Non-mesomorphic solute molecules may be incorporated into liquid-crystalline solvents without destruction of the order prevailing in the liquid-crystalline matrix. The anisotropic solute-solvent interaction leads to an appreciable orientation of the guest molecules with respect to the axis of preferred solvent alignment. The consequences may be useful as shown by the use of liquid crystals as anisotropic solvents for spectroscopic investigations of anisotropic molecular properties [166]. Ordered solvent phases such as liquid crystals have also been used as reaction media, particularly for photochemical reactions cf. for example [111, 155, 163] and Section 5.5.9. [Pg.59]

Anisotropy of the Spin-Spin Coupling Tensor. - In NMR experiments performed in anisotropic liquid crystal (LC) phases or in the solid state, the anisotric part of an indirect nuclear spin-spin coupling tensor J appears combined with the direct dipolar coupling D. The NMR spin Hamiltonian appropriate for spin 1/2 nuclei in molecules partially oriented in uniaxial LC solvents can be written in the high field approximation as... [Pg.135]

Surfactant molecules commonly self-assemble in water (or in oil). Even single-surfactant systems can display a quite remarkably rich variety of structures when parameters such as water content or temperature are varied. In dilute solution they form an isotropic solution phase consisting of micellar aggregates. At more concentrated surfactant-solvent systems, several isotropic and anisotropic liquid crystalline phases will be formed [2]. The phase behavior becomes even more intricate if an oil (such as an alkane or fluorinated hydrocarbon) is added to a water-surfactant binary system and the more so if other components (such as another surfactant or an alcohol) are also included [3], In such systems, emulsions, microemulsions, and lyotropic mesophases with different geometries may be formed. Indeed, the ability to form such association colloids is the feature that singles out surfactants within the broader group of amphiphiles [4]. No wonder surfactants phase behavior and microstructures have been the subject of intense and profound investigation over the course of recent decades. [Pg.185]

The formation of the mesophase by this route has the disadvantage of requiring rather long processing times. An alternative route is the solvent route [18]. Isotropic aromatic pitches contain a separable fraction which, when heated at 230-400°C, develops an optically anisotropic liquid crystal phase in <10 minutes. This mesophase has been called a neomesophase since it is highly soluble in solvents such as pyridine or quinoline, while the mesophase derived by the thermal route is insoluble. The separable fraction of isotropic pitch is insoluble in solvents like benzene, toluene, or mixtures of toluene and heptane. Thus, it can be separated by solvent extraction from isotropic or heat soaked pitches (Figure 5, b and b ). [Pg.241]

A very interesting property of liquid crystals is their ability to orientate molecules of solute. The anisotropic solute-solvent interactions depend critically on the geometry of the guest molecule and the applications reported are based on this property. [Pg.296]

The anisotropic solute—solvent interaction depends critically on the geometry of the guest molecules and therefore provides a very sensitive physical parameter to distinguish between two geometrical isomers of a molecule. For this reason liquid crystals may be used most successfully as substrates in gas-liquid chromatography. This type of application is described in Section 5. [Pg.22]

Figure 19. Temperature dependencies of the retention times of para- and meta-xylene in 4,4 -di-hexyloxyazoxybenzene. At the isotropic-to-nematic transition (at about 125°C) the retention times decrease abruptly in a temperature range of about 5°C. A good separation of the isomers is only possible in the liquid crystalline states of the substrate, where the activity coefficient (and thus the retention time) is determined primarily by the anisotropic solute-solvent interaction (from Ref. 127). Figure 19. Temperature dependencies of the retention times of para- and meta-xylene in 4,4 -di-hexyloxyazoxybenzene. At the isotropic-to-nematic transition (at about 125°C) the retention times decrease abruptly in a temperature range of about 5°C. A good separation of the isomers is only possible in the liquid crystalline states of the substrate, where the activity coefficient (and thus the retention time) is determined primarily by the anisotropic solute-solvent interaction (from Ref. 127).
Lyotropic LCPs are polymers whose solutions exhibit liquid crystallinity, that is, anisotropic domains in a fluid system, over a characteristic range of concentrations. In more concentrated solutions the system may be multiphasic and contain crystalline particles, amorphous gel particles and anisotropic solution coexisting with one another. Upon dilution, the anisotropic liquid crystalline solution turns biphasic, where anisotropic and isotropic solutions of the same polymer in the same solvent coexist. Upon further dilution, the solution becomes fully isotropic. Polymers that exhibit lyotropic mesomorp-hicity are either stiff-backbone polymers with strong interchain interaction in the absence of solvent or polymers whose backbones are so extended and rigid that, upon breakup of their crystalline order by the addition of some solvent, the stiff polymer chains retain substantial measure of parallel alignment to remain in mobile anisotropic domains. [Pg.9]

Liquid crystals (LCs) may be divided into two subgroups (1) lyotropic LCs, formed by mixing rigid rodlike molecules with a solvent, and (2) thermotropic LCs, formed by heating. One finds in the literature such terms as mesomorphs, mesoforms, mesomorphic states, and anisotropic liquids. The molecules in LCs have an orderly arrangement, and different orders of structures (nematic, smectic, or cholesteric structure) have been observed, as schematically shown in Figure 9.1. The kinds of molecules that form LCs generally possess certain common molecular features. The structural characteristics that determine the type of mesomorphism exhibited by various molecules have been reviewed. [Pg.369]

An example for a partially known ternary phase diagram is the sodium octane 1 -sulfonate/ 1-decanol/water system [61]. Figure 34 shows the isotropic areas L, and L2 for the water-rich surfactant phase with solubilized alcohol and for the solvent-rich surfactant phase with solubilized water, respectively. Furthermore, the lamellar neat phase D and the anisotropic hexagonal middle phase E are indicated (for systematics, cf. Ref. 62). For the quaternary sodium octane 1-sulfonate (A)/l-butanol (B)/n-tetradecane (0)/water (W) system, the tricritical point which characterizes the transition of three coexisting phases into one liquid phase is at 40.1°C A, 0.042 (mass parts) B, 0.958 (A + B = 56 wt %) O, 0.54 W, 0.46 [63]. For both the binary phase equilibrium dodecane... [Pg.190]

Benzene is an isotropic solvent its viscosity is the same in every direction. However, a liquid crystal solvent is an anisotropic solvent its viscosity is smaller in the direction parallel to the long axis of the molecule than the perpendicular direction. Methylhenzene is a small, spherical molecule, so its interactions with either solvent are similar in all directions. [Pg.995]

Today, lipophilicity can be determined in many systems that are classified by the characteristics of the nonaqueous phase. When the second phase is an organic solvent (e.g. n-octanol), the system is isotropic, when the second phase is a suspension (e.g. liposomes), it is anisotropic, and when the second phase is a stationary phase in liquid chromatography, it is an anisotropic chromatographic system [6]. Here, we discuss the main aspects of isotropic and anisotropic lipophilicity and their biological relevance the chromatographic approaches are investigated in the following chapter by Martel et al. [Pg.322]

Lyotropic liquid crystals are those which occur on the addition of a solvent to a substance, or on increasing the substance concentration in the solvent. There are examples of cellulose derivatives that are both thennotropic and lyotropic. However, cellulose and most cellulose derivatives form lyotropic mesophases. They usually have a characteristic "critical concentration" or "A point" where the molecules first begin to orient into the anisotropic phase which coexists with the isotropic phase. The anisotropic or ordered phase increases relative to the isotropic phase as the solution concentration is increased in a concentration range termed the "biphasic region." At the "B point" concentration the solution is wholly anisotropic. These A and B points are usually determined optically. [Pg.260]

Fruitful interplay between experiment and theory has led to an increasingly detailed understanding of equilibrium and dynamic solvation properties in bulk solution. However, applying these ideas to solvent-solute and surface-solute interactions at interfaces is not straightforward due to the inherent anisotropic, short-range forces found in these environments. Our research will examine how different solvents and substrates conspire to alter solution-phase surface chemistry from the bulk solution limit. In particular, we intend to determine systematically and quantitatively the origins of interfacial polarity at solid-liquid interfaces as well as identify how surface-induced polar ordering... [Pg.493]

One aspect of the research will examine equilibrium aspects of solvation at hydro-phobic and hydrophilic interfaces. In these experiments, solvent dependent shifts in chromophore absorption spectra will be used to infer interfacial polarity. Preliminary results from these studies are presented. The polarity of solid-liquid interfaces arises from a complicated balance of anisotropic, intermolecular forces. It is hoped that results from these studies can aid in developing a general, predictive understanding of dielectric properties in inhomogeneous environments. [Pg.509]


See other pages where Anisotropic liquids solvents is mentioned: [Pg.265]    [Pg.84]    [Pg.385]    [Pg.95]    [Pg.39]    [Pg.222]    [Pg.488]    [Pg.530]    [Pg.65]    [Pg.628]    [Pg.327]    [Pg.370]    [Pg.335]    [Pg.204]    [Pg.609]    [Pg.203]    [Pg.204]    [Pg.585]    [Pg.114]    [Pg.52]    [Pg.218]    [Pg.380]    [Pg.68]    [Pg.112]    [Pg.140]    [Pg.19]    [Pg.278]    [Pg.278]    [Pg.548]    [Pg.587]    [Pg.49]   


SEARCH



Solvent liquids

© 2024 chempedia.info