Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aniline hydrochloride from

TABLE LXVIII. HYDROLYSIS OF ANILINE HYDROCHLORIDE FROM DISTRIBUTION... [Pg.386]

Conversion of the salt of a weak base into the free base. Prepare a column of a strong base anion resin (such as Amberlite IRA-40o(OH) ) washed with distilled water as above. Drain off most of the water and then allow 100 ml. of A//2.Na.2C03 solution to pass through the column at 5 ml. per minute. Again wash the column with 200 ml. of distilled water. Dissolve 0-05 g. of aniline hydrochloride in 100 ml. of distilled water and pass the solution down the column. The effluent contains aniline in solution and free from all other ions. [Pg.57]

Prepare a solution of benzencdiazonium chloride from 20 ml, (20 5 g.) of aniline precisely as in the preparation of chlorobenzene (p. 189), i.e, by dissolving the aniline in a mixture of 50 ml. of concentrated hydrochloric acid and 50 ml. of water, cooling to 5°, and then cautiously adding a solution of 17 g. of sodium nitrite in 40 ml. of water to the well-cooled and stirred aniline hydrochloride solution so that the temperature of the mixture remains between 5° and 10°. [Pg.191]

Add 20 g. of /)-bromoaniline to 20 ml. of water in a 250 ml. beaker, and warm the mixture until the amine melts. Now add 23 ml. of concentrated hydrochloric acid and without delay stir the mixture mechanically in an ice-water bath, so that a paste of fine /> bromo-aniline hydrochloride crystals separates. Maintain the temperature of the stirred mixture at about 5° whilst slowly adding from a dropping-funnel a solution of 8 5 g. of sodium nitrite in 20 ml. of water con tinue the stirring for 20 minutes after the complete addition of the nitrite. [Pg.201]

Add 4 g. of aniline hydrochloride to 16 ml. of aniline contained in a 100 ml. conical flask, and then add 8 g. of diazoaminobenzene, both the solid components being finely powdered. Place the flask in a water-bath, and heat the latter carefully so that the well-stirred mixture is kept at 40° for i hour. Then remove the flask from the water-bath and allow it to stand overnight to ensure that the conversion is complete. Then add about 20 ml. of glacial acetic acid dissolved in the same volume of water, and stir the mixture well to extract the free aniline in the form of its soluble acetate. Allow the mixture to stand (with occasional stirring) for at least 10 minutes, and then filter at the... [Pg.208]

Aniline hydrochloride, being a salt formed from a very weak base and a strong acid, undergoes considerable hydrolysis in aqueous solution to aniline... [Pg.454]

Dilute hydrochloric or sulphuric acid finds application in the extraction of basic substances from mixtures or in the removal of basic impurities. The dilute acid converts the base e.g., ammonia, amines, etc.) into a water-soluble salt e.g., ammonium chloride, amine hydrochloride). Thus traces of aniline may be separated from impure acetanilide by shaking with dilute hydrochloric acid the aniline is converted into the soluble salt (aniline hydrochloride) whilst the acetanilide remains unaffected. [Pg.151]

Secondary and tertiary amines are not generally prepared in the laboratory. On the technical scale methylaniline is prepared by heating a mixture of aniline hydrochloride (55 parts) and methyl alcohol (16 parts) at 120° in an autoclave. For dimethylaniline, aniline and methyl alcohol are mixed in the proportion of 80 78, 8 parts of concentrated sulphuric acid are added and the mixture heated in an autoclave at 230-235° and a pressure of 25-30 atmospheres. Ethyl- and diethyl-anihne are prepared similarly. One method of isolating pure methyl- or ethyl-aniline from the commercial product consists in converting it into the Y-nitroso derivative with nitrous acid, followed by reduction of the nitroso compound with tin and hydrochloric acid ... [Pg.562]

Dissolve 5 g. of finely-powdered diazoaminobenzene (Section IV,81) in 12-15 g. of aniline in a small flask and add 2-5 g. of finely-powdered aniline hydrochloride (1). Warm the mixture, with frequent shaking, on a water bath at 40-45° for 1 hour. Allow the reaction mixture to stand for 30 minutes. Then add 15 ml. of glacial acetic acid diluted with an equal volume of water stir or shake the mixture in order to remove the excess of anihne in the form of its soluble acetate. Allow the mixture to stand, with frequent shaking, for 15 minutes filter the amino-azobenzene at the pump, wash with a little water, and dry upon filter paper Recrystallise the crude p-amino-azobenzene (3-5 g. m.p. 120°) from 15-20 ml. of carbon tetrachloride to obtain the pure compound, m.p. 125°. Alternatively, the compound may be recrystaUised from dilute alcohol, to which a few drops of concentrated ammonia solution have been added. [Pg.627]

Primary aromatic amines react with aldehydes to form Schiff bases. Schiff bases formed from the reaction of lower aUphatic aldehydes, such as formaldehyde and acetaldehyde, with primary aromatic amines are often unstable and polymerize readily. Aniline reacts with formaldehyde in aqueous acid solutions to yield mixtures of a crystalline trimer of the Schiff base, methylenedianilines, and polymers. Reaction of aniline hydrochloride and formaldehyde also yields polymeric products and under certain conditions, the predominant product is 4,4 -methylenedianiline [101 -77-9] (26), an important intermediate for 4,4 -methylenebis(phenyhsocyanate) [101-68-8], or MDI (see Amines, aromatic amines, l thylenedianiline). [Pg.230]

Dia2oaminoben2ene has also been prepared by the action of nitrous acid gas on aniline in alcohol by the action of silver nitrite on aniline hydrochloride and together with phenylurea by the action of nitrosophenylurea on aniline in methyl alcohol. Niementowski and Roszkowski have reported studies on the diazotization of aniline, aniline hydrochloride, and aniline sulfate with sodium nitrite and silver nitrite. The procedure described is adapted from that of Fischer. ... [Pg.26]

Aniline [62-53-3] M 93.1, f -6.0", b 68.3/lOmm, 184.4"/760mm, d 1.0220, n 1.585, n s 1.5832, pK 4.60. Aniline is hygroscopic. It can be dried with KOH or CaH2, and distd at reduced pressure. Treatment with stannous chloride removes sulfur-containing impurities, reducing the tendency to become coloured by aerial oxidn. Can be crystd from Et20 at low temps. More extensive purifications involve preparation of derivatives, such as the double salt of aniline hydrochloride and cuprous chloride or zinc chloride, or A -acetylaniline (m 114") which can be recrystd from water. [Pg.113]

Petrow described the formation of 3-iminoketones from 3-keto-aldehydes and aniline. Cyclization in the presence of aniline hydrochloride and ZnCh smoothly provides the desired quinoline 26. Bis-imine 24 is the proposed intermediate that undergoes cyclization. The aldimine is more reactive than the ketimine toward cyclization thus, cyclization on the aldimine occurs. When the bis-imine is not formed, partial aniline migration can occur which results in mixtures of cyclized products. [Pg.392]

In a departure from the prototype molecule, the benzylpiperi-done is first converted to the corresponding aminonitrile (a derivative closely akin to a cyanohydrin) by treatment with aniline hydrochloride and potassium cyanide (126). Acid hydrolysis of the nitrile affords the corresponding amide (127). Treatment with formamide followed by reduction affords the spiro oxazinone... [Pg.306]

One route is described in U.S. Patent 3,412,193 as follows. To a mixture of o-(p-chloro-phenoxy)aniline hydrochloride (prepared from 32 g of the base) in 50 ml of pyridine is added gradually while heating under reflux, 25 ml of ethyl chloroformate. After the addition is completed, the mixture is heated under reflux for one hour longer, and then evaporated under reduced pressue to an oily residue. The residue is taken up in 300 ml of water, and extracted with ether (approximately 200 ml). [Pg.890]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and aniline may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, aniline hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of course, simple apphcations of the fact that the various components fall into different solubility groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the n-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated com-poimds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apph cation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a c ute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble liquid compounds by shal g with a solution of sodium bisulphite the iddehyde forms a solid bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

A technique of developing Aniline Black directly on the fiber was found by Lightfoot in the period between 1860 and 1863. In accordance with this process, the fiber is soaked with aniline, aniline hydrochloride, and sodium chlorate in the presence of an oxidation catalyst (e.g., ammonium vanadate, potassium hexa-cyanoferrate(II)). The compound is developed at 60 to 100°C and then oxidized further with sodium chromate. It should be noted, however, that Perkin had already synthesized a black compound which he called Aniline Black as early as 1856. He oxidized aniline (containing toluidine) with potassium dichromate and separated Aniline Violet from the resulting black mixture (Aniline Black). [Pg.577]

Further, add 1 g. of dry finely powdered aniline hydrochloride to 5 g. of aniline and heat the mixture in a test tube on the water bath at 30°, with 2 g. of dry diazoaminobenzene. Continue heating the frequently stirred mixture for half an hour. Then raise the temperature to 45° and heat again for half an hour. When now a sample no longer evolves nitrogen on heating with hydrochloric acid, dissolve the aniline by adding 24 c.c. of 10 per cent hydrochloric acid (6 c.c. of concentrated acid and 18 c.c. of water). Recrystallise the aminoazobenzene hydrochloride, which remains undissolved, from 100 parts of hot water to which a little hydrochloric acid has been added. In order to obtain the orange-yellow base decompose the salt with sodium carbonate. [Pg.304]

A. N-Sulfinylaniline (Note 1). A solution of 82.5 g. (0.69 mole) of pure thionyl chloride (Note 2) in 100 ml. of anhydrous benzene is added slowly to a solution of 46.5 g. (0.5 mole) of freshly distilled aniline in 250 ml. of anhydrous benzene contained in a 1-1. round-bottomed flask, with swirling and occasional cooling in an ice bath (if necessary). An immediate precipitation of aniline hydrochloride occurs. After the addition of the thionyl chloride solution is complete, the mixture is heated to reflux, protected from moisture, on a heating mantle until a clear solution is obtained (2-5 hours). The solvent and excess thionyl chloride are evaporated under reduced pressure (Note 3)... [Pg.36]

The methods for preparing 4-phenyl-1-carbethoxysemi-enrhazido and 4-phcnylurazole have been described in principle by /inner and Deucker.6 4-Phenylurazole has also been prepared from biurea and aniline hydrochloride 7,8 the method,... [Pg.146]

While the naphthol is dissolving, a solution of benzenedi-azonium chloride is prepared. In a 3-I. wide-mouth bottle are placed 128 g. of aniline and 1.5 kg. of cracked ice, and on to this mixture while it is stirred (by hand) is poured 410 cc. of concentrated hydrochloric acid (32 per cent sp. gr. 1.16). Some crystals of aniline hydrochloride separate at this point. A solution of 100 g. of sodium nitrite in 200 cc. of water is now run in slowly from a 500-cc. separatory funnel. The tip of the stem of the separatory funnel should dip well below the surface of the liquid. The mixture is stirred (by hand if desired) and a drop is tested from time to time with starch iodide paper. This is... [Pg.7]

The reaction can undoubtedly be explained by the formation of an equilibrium mixture of urea and ammonium cyanate in boiling solution the ammonium cyanate reacts at the moment of its formation with aniline hydrochloride, yielding phenylurea. This latter compound also undergoes a secondary reaction, involving the intermediate formation of phenyl isocyanate, which reacts with aniline hydrochloride forming carbanilide so that in order to obtain the best yield it is necessary to interrupt the process from time to time and remove the phenylurea first formed. [Pg.96]

N- Etby l-(2-mtropropyl )aniline Hydrochloride, C6H6N(C3H6)CH2CH(N02)CHs.HC1 mw 244.73, mp 126°. Prepd from 2-nicropropane and ethyl-aniline... [Pg.200]

The procedure given is similar to one described by Ullmann and Miinzhuber, except that one-half as much aniline hydrochloride and two-thirds as much glacial acetic acid are used, and the time of reflux is reduced from 6 to 3 hours. -Aminotetra-phenylmethane also can be prepared from triphenylchlorometh-ane and aniline hydrochloride, following the same procedure outlined for triphenylcarbinol and aniline hydrochloride, except that a reaction time of 1 hour is sufficient.. [Pg.4]

It occurred to us that ionic interactions might be a highly suitable binding motif to enforce the formation of heterobidentate ligand combinations [48[. The assembly ligand 14 /IS has been formed from the well-known TPPMS (14, monosulfonated triphenylphosphine sodium salt) and 3-(diphcnylphosphinyl)aniline hydrochloride (IS) by a simple ion-exchange reaction (Scheme 10.6). The coordination behavior ofthe ion-pair 14 /I S has been tested with various transition metal complexes. Other... [Pg.270]


See other pages where Aniline hydrochloride from is mentioned: [Pg.646]    [Pg.250]    [Pg.94]    [Pg.150]    [Pg.95]    [Pg.195]    [Pg.646]    [Pg.75]    [Pg.49]    [Pg.51]    [Pg.52]    [Pg.24]    [Pg.130]    [Pg.51]    [Pg.95]    [Pg.104]    [Pg.63]    [Pg.89]    [Pg.50]    [Pg.310]   
See also in sourсe #XX -- [ Pg.95 , Pg.1459 ]

See also in sourсe #XX -- [ Pg.95 , Pg.1459 ]




SEARCH



Aniline hydrochloride

From Anilines

© 2024 chempedia.info