Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

And ammonia converters

Selection of the high pressure steam conditions is an economic optimisation based on energy savings and equipment costs. Heat recovery iato the high pressure system is usually available from the process ia the secondary reformer and ammonia converter effluents, and the flue gas ia the reformer convection section. Recovery is ia the form of latent, superheat, or high pressure boiler feedwater sensible heat. Low level heat recovery is limited by the operating conditions of the deaerator. [Pg.353]

Place 5 ml. of benzaldehyde in a wide-necked stout-walled bottle of about 100 ml. capacity (a conical flask is too fragile for this purpose) and add 50 ml. of concentrated dy 0 880) ammonia solution. Cork the bottle securely, shake vigorously, and then allow to stand for 24 hours, by which time the layer of benzaldehyde at the bottom of the bottle will have been converted into a hard mass of hydrobenzamide. (If after 24 hours the crude hydrobenzamide is still syrupy, shake the mixture vigorously and allow to stand for another hour, when the conversion will be complete.) Break up the solid pellet with a strong spatula, filter at the pump, wash with water and drain thoroughly. Recrystallise from ethanol methylated spirit should not be used, as it contains sufficient water to cause partial hydrolysis back to benzaldehyde and ammonia. Hydrobenzamide is obtained as colourless crystals, m.p. 101° (and not 110° as frequently quoted) yield, 4 g. [Pg.230]

We saw m Section 9 10 that the combination of a Group I metal and liquid ammonia is a powerful reducing system capable of reducing alkynes to trans alkenes In the pres ence of an alcohol this same combination reduces arenes to nonconjugated dienes Thus treatment of benzene with sodium and methanol or ethanol m liquid ammonia converts It to 1 4 cyclohexadiene... [Pg.438]

The heat of hydration is approximately —70 kj /mol (—17 kcal/mol). This process usually produces no waste streams, but if the acrylonitrile feed contains other nitrile impurities, they will be converted to the corresponding amides. Another reaction that is prone to take place is the hydrolysis of acrylamide to acryhc acid and ammonia. However, this impurity can usually be kept at very low concentrations. American Cyanamid uses a similar process ia both the United States and Europe, which provides for their own needs and for sales to the merchant market. [Pg.135]

Ammonia from coal gasification has been used for fertilizer production at Sasol since the beginning of operations in 1955. In 1964 a dedicated coal-based ammonia synthesis plant was brought on stream. This plant has now been deactivated, and is being replaced with a new faciUty with three times the production capacity. Nitric acid is produced by oxidation and is converted with additional ammonia into ammonium nitrate fertilizers. The products are marketed either as a Hquid or in a soHd form known as Limestone Ammonium Nitrate. Also, two types of explosives are produced from ammonium nitrate. The first is a mixture of fuel oil and porous ammonium nitrate granules. The second type is produced by emulsifying small droplets of ammonium nitrate solution in oil. [Pg.168]

Methanol can be converted to a dye after oxidation to formaldehyde and subsequent reaction with chromatropic acid [148-25-4]. The dye formed can be deterruined photometrically. However, gc methods are more convenient. Ammonium formate [540-69-2] is converted thermally to formic acid and ammonia. The latter is trapped by formaldehyde, which makes it possible to titrate the residual acid by conventional methods. The water content can be determined by standard Kad Eischer titration. In order to determine iron, it has to be reduced to the iron(II) form and converted to its bipyridyl complex. This compound is red and can be determined photometrically. Contamination with iron and impurities with polymeric hydrocyanic acid are mainly responsible for the color number of the merchandized formamide (<20 APHA). Hydrocyanic acid is detected by converting it to a blue dye that is analyzed and deterruined photometrically. [Pg.509]

The resihency and dyeabihty of poly(vinyl alcohol) fibers is improved by a process incorporating -hydroxybenzaldehyde to provide a site for the formation of a stable Mannich base. Hydroxyl groups on the fiber are converted to acetal groups by -hydroxybenzaldehyde. Subsequent reaction with formaldehyde and ammonia or an alkylamine is rapid and forms a stable Mannich base that is attached to the polymer backbone (94). [Pg.508]

Mono- and diethanolamine are converted to formaldehyde and ammonia by acidic periodates. [Pg.7]

A process for the production of DPA from phenol and ammonia has been reported (25). Typically, the reaction is carried out continuously ia a fixed-bed reactor usiag an acidic alumiaa catalyst at 300°C—420°C. The first product formed is aniline which is subsequently converted to DPA. Consequently, the reaction can be carried out to simultaneously produce DPA and aniline, ia any desired ratio, simply by varyiag the molar ratios of phenol (and aniline) ia the reactor feed stream. [Pg.244]

Hydroisoquinolines. In addition to the ring-closure reactions previously cited, a variety of reduction methods are available for the synthesis of these important ring systems. Lithium aluminum hydride or sodium in Hquid ammonia convert isoquinoline to 1,2-dihydroisoquinoline (175). Further reduction of this intermediate or reduction of isoquinoline with tin and hydrochloric acid, sodium and alcohol, or catalyticaHy using platinum produces... [Pg.398]

In one patent (31), a filtered, heated mixture of air, methane, and ammonia ia a volume ratio of 5 1 1 was passed over a 90% platinum—10% rhodium gauze catalyst at 200 kPa (2 atm). The unreacted ammonia was absorbed from the off-gas ia a phosphate solution that was subsequently stripped and refined to 90% ammonia—10% water and recycled to the converter. The yield of hydrogen cyanide from ammonia was about 80%. On the basis of these data, the converter off-gas mol % composition can be estimated nitrogen, 49.9% water, 21.7% hydrogen, 13.5% hydrogen cyanide, 8.1% carbon monoxide, 3.7% carbon dioxide, 0.2% methane, 0.6% and ammonia, 2.3%. [Pg.377]

In the BMA process, methane (natural gas) and ammonia are reacted without air being present (44). The reaction is carried out in tubes that are heated externally to supply the endothermic heat of reaction very similar to a reformer. Yield from ammonia and methane is above 90%. The off-gas from the converter contains more than 20 mol % hydrogen cyanide, about 70 mol % hydrogen, 3 mol % ammonia, 1 mol % methane, and about 1 mol % nitrogen from ammonia decomposition. [Pg.379]

There are two distinct classes of enzymes that hydrolyze nitriles. Nittilases (EC 3.5.5. /) hydrolyze nittiles directiy to corresponding acids and ammonia without forming the amide. In fact, amides are not substrates for these enzymes. Nittiles also may be first hydrated by nittile hydratases to yield amides which are then converted to carboxyUc acid with amidases. This is a two-enzyme process, in which enantioselectivity is generally exhibited by the amidase, rather than the hydratase. [Pg.344]

Pyridazinecarboxamides are prepared from the corresponding esters or acid chlorides with ammonia or amines or by partial hydrolysis of cyanopyridazines. Pyridazinecarboxamides with a variety of substituents are easily dehydrated to nitriles with phosphorus oxychloride and are converted into the corresponding acids by acid or alkaline hydrolysis. They undergo Hofmann degradation to give the corresponding amines, while in the case of two ortho carboxamide groups pyrimidopyridazines are formed. [Pg.33]

Treatment of the oxazole (699) with ammonia converts it into 5-hydroxy-4,6-dimethyl-pyrimidine (700) and homologues may be made similarly 60CB1998). [Pg.120]

These reactors are of shell-and-tnbe configuration and mostly have the catalyst in the tubes, although some ammonia converters have the... [Pg.2103]

The Catalytic Wet Air Oxidation (CWAO) process is capable of converting all organic contaminants ultimately to carbon dioxide and water, and can also remove oxidizable inorganic components such as cyanides and ammonia. The process uses air as the oxidant, which is mixed with the effluent and passed over a catalyst at elevated temperatures and pressures. If complete COD removal is not required, the air rate, temperature and pressure can be reduced, therefore reducing the operating cost. CWAO is particularly cost-effective for effluents that are highly concentrated... [Pg.561]

The compressed synthesis gas is dried, mixed with a recycle stream, and introduced into the synthesis reactor after the recycle compressor. The gas mixture is chilled and liquid ammonia is removed from the secondary separator. The vapor is heated and passed into the ammonia converter. The feed is preheated inside the converter prior to entering the catalyst bed. The reaction occurs at 450-600°C over an iron oxide catalyst. The ammonia synthesis reaction between nitrogen, N2, and hydrogen, Hj, is... [Pg.1127]

The most spectacular failure of this sort occurred when the exit pipe from a high-pressure ammonia converter was constructed from carbon steel instead of l A% Cr, 0.5% Mo. Hydrogen attack occurred, and a hole appeared at a bend. The hydrogen leaked out, and the reaction forces pushed the converter over. [Pg.192]


See other pages where And ammonia converters is mentioned: [Pg.76]    [Pg.462]    [Pg.215]    [Pg.76]    [Pg.462]    [Pg.215]    [Pg.251]    [Pg.1078]    [Pg.298]    [Pg.322]    [Pg.8]    [Pg.149]    [Pg.82]    [Pg.84]    [Pg.206]    [Pg.261]    [Pg.263]    [Pg.344]    [Pg.351]    [Pg.499]    [Pg.525]    [Pg.27]    [Pg.103]    [Pg.201]    [Pg.469]    [Pg.281]    [Pg.76]    [Pg.240]    [Pg.304]    [Pg.284]    [Pg.503]    [Pg.88]    [Pg.301]   
See also in sourсe #XX -- [ Pg.87 , Pg.88 , Pg.89 , Pg.90 , Pg.91 , Pg.92 ]




SEARCH



Ammonia converter

© 2024 chempedia.info