Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical methods, chemical physical

Furthermore, molecular analysis is absolutely necessary for the petroleum industry in order to interpret the chemical processes being used and to evaluate the efficiency of treatments whether they be thermal or catalytic. This chapter will therefore present physical analytical methods used in the molecular characterization of petroleum. [Pg.39]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

In Section lA we indicated that analytical chemistry is more than a collection of qualitative and quantitative methods of analysis. Nevertheless, many problems on which analytical chemists work ultimately involve either a qualitative or quantitative measurement. Other problems may involve characterizing a sample s chemical or physical properties. Finally, many analytical chemists engage in fundamental studies of analytical methods. In this section we briefly discuss each of these four areas of analysis. [Pg.8]

When the analytical method s selectivity is insufficient, it may be necessary to separate the analyte from potential interferents. Such separations can take advantage of physical properties, such as size, mass or density, or chemical properties. Important examples of chemical separations include masking, distillation, and extractions. [Pg.224]

Acetylene Derived from Hydrocarbons The analysis of purified hydrocarbon-derived acetylene is primarily concerned with the determination of other unsaturated hydrocarbons and iaert gases. Besides chemical analysis, physical analytical methods are employed such as gas chromatography, ir, uv, and mass spectroscopy. In iadustrial practice, gas chromatography is the most widely used tool for the analysis of acetylene. Satisfactory separation of acetylene from its impurities can be achieved usiag 50—80 mesh Porapak N programmed from 50—100°C at 4°C per minute. [Pg.378]

The unique chemical, physical, and spectroscopic properties of organosiUcon compounds are reflected in the analytical methodology used for the detection, quantification, and characterization of these compounds. Several thorough, up-to-date reviews dealing with analytical methods appHed to siUcones have beenpubhshed (434—436). [Pg.59]

The chemical and physical phenomena involved in chemical process accidents is very complex. The preceding provides the elements of some of the simpler analytic methods, but a PSA analyst should only have to know general principles and use the work of experts contained in computer codes. There are four types of phenomenology of concern 1) release of dispersible toxic material, 21 dispersion of the material, 3) fires, and 4) explosions. A general reference to such codes is not in the open literature, although some codes are mentioned in CCPS (1989) they are not generally available to the public. [Pg.346]

Every analytical result forms the basis for a subsequent decision process. So the result should be subject to a high degree of precision and accuracy. This is also true of chromatographic methods. The physical detection methods described until now are frequently not sufficient on their own. If this is the case they have to be complemented by specific chemical reactions (derivatization). [Pg.55]

However, compared with the traditional analytical methods, the adoption of chromatographic methods represented a signihcant improvement in pharmaceutical analysis. This was because chromatographic methods had the advantages of method specihcity, the ability to separate and detect low-level impurities. Specihcity is especially important for methods intended for early-phase drug development when the chemical and physical properties of the active pharmaceutical ingredient (API) are not fully understood and the synthetic processes are not fully developed. Therefore the assurance of safety in clinical trials of an API relies heavily on the ability of analytical methods to detect and quantitate unknown impurities that may pose safety concerns. This task was not easily performed or simply could not be carried out by classic wet chemistry methods. Therefore, slowly, HPLC and GC established their places as the mainstream analytical methods in pharmaceutical analysis. [Pg.54]

A number of methods are available for following the oxidative behaviour of food samples. The consumption of oxygen and the ESR detection of radicals, either directly or indirectly by spin trapping, can be used to follow the initial steps during oxidation (Andersen and Skibsted, 2002). The formation of primary oxidation products, such as hydroperoxides and conjugated dienes, and secondary oxidation products (carbohydrides, carbonyl compounds and acids) in the case of lipid oxidation, can be quantified by several standard chemical and physical analytical methods (Armstrong, 1998 Horwitz, 2000). [Pg.331]

As a special service, the German authority has published reviews on residue analysis concerning new a.i. contained in plant protection since 1996, including selected physical-chemical data. Recoveries obtained in fortification experiments and LOQs for analytical methods for determination in crops, food of plant and animal origin. [Pg.35]

The lattice gas has been used as a model for a variety of physical and chemical systems. Its application to simple mixtures is routinely treated in textbooks on statistical mechanics, so it is natural to use it as a starting point for the modeling of liquid-liquid interfaces. In the simplest case the system contains two kinds of solvent particles that occupy positions on a lattice, and with an appropriate choice of the interaction parameters it separates into two phases. This simple version is mainly of didactical value [1], since molecular dynamics allows the study of much more realistic models of the interface between two pure liquids [2,3]. However, even with the fastest computers available today, molecular dynamics is limited to comparatively small ensembles, too small to contain more than a few ions, so that the space-charge regions cannot be included. In contrast, Monte Carlo simulations for the lattice gas can be performed with 10 to 10 particles, so that modeling of the space charge poses no problem. In addition, analytical methods such as the quasichemical approximation allow the treatment of infinite ensembles. [Pg.165]

Practically all classical methods of atomic spectroscopy are strongly influenced by interferences and matrix effects. Actually, very few analytical techniques are completely free of interferences. However, with atomic spectroscopy techniques, most of the common interferences have been studied and documented. Interferences are classified conveniently into four categories chemical, physical, background (scattering, absorption) and spectral. There are virtually no spectral interferences in FAAS some form of background correction is required. Matrix effects are more serious. Also GFAAS shows virtually no spectral interferences, but... [Pg.606]

Although following similar nuclear reaction schemes, nuclear analytical methods (NAMs) comprise bulk analysing capability (neutron and photon activation analysis, NAA and PAA, respectively), as well as detection power in near-surface regions of solids (ion-beam analysis, IB A). NAMs aiming at the determination of elements are based on the interaction of nuclear particles with atomic nuclei. They are nuclide specific in most cases. As the electronic shell of the atom does not participate in the principal physical process, the chemical bonding status of the element is of no relevance. The general scheme of a nuclear interaction is ... [Pg.662]

As the value of these two new chemicals for insecticides became more evident, the need for extended experimental and test work was definitely established. It was necessary to determine chemical formulas, work out analytical methods, obtain knowledge of various physical and chemical characteristics, and complete evaluation of insecticidal action as well as toxicity and effect of residues. Toxicity was concerned with not only insects but humans and other warm-blooded animals. Residual studies included information on persistence and type and amount of residue. This information, once accumulated, must be correlated with similar information on other insecticides. [Pg.103]

Today, analytical chemistry has such a wide variety of methods and techniques at its disposal that the search for general fundamentals seems to be very difficult. But independent from the concrete chemical, physical and technical basis on which analytical methods work, all the methods do have one principle in common, namely the extraction of information from samples by the generation, processing, calibration, and evaluation of signals according to the logical steps of the analytical process. [Pg.38]

The physical and chemical properties of complex samples are strongly influenced by the spatial distribution of their chemical components [1]. Thus, analytical methods that provide information on both the molecular nature and the... [Pg.527]

The comprehensive profiling of drug substances and pharmaceutical excipients as to their physical and analytical characteristics remains at the core of pharmaceutical development. As a result, the compilation and publication of comprehensive summaries of physical and chemical data, analytical methods, routes of compound preparation, degradation pathways, uses and applications, etc., has always been a vital function to both academia and industry. [Pg.2]


See other pages where Analytical methods, chemical physical is mentioned: [Pg.83]    [Pg.957]    [Pg.77]    [Pg.1136]    [Pg.228]    [Pg.8]    [Pg.1]    [Pg.6]    [Pg.174]    [Pg.425]    [Pg.451]    [Pg.299]    [Pg.1623]    [Pg.201]    [Pg.1136]    [Pg.55]    [Pg.746]    [Pg.982]    [Pg.662]    [Pg.662]    [Pg.23]    [Pg.704]    [Pg.5]    [Pg.448]    [Pg.455]    [Pg.5]    [Pg.35]    [Pg.360]    [Pg.514]    [Pg.456]   
See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Analytical methods, chemical

Chemical physical method

Physical methods

© 2024 chempedia.info